Advance Search

LIU Jiajia,NIE Zishuo,YU Baozhong,et al. Analysis of the mechanism and influencing factors of supercritical carbon dioxide on coal permeability enhancement[J]. Coal Science and Technology,2023,51(2):204−216

. DOI: 10.13199/j.cnki.cst.2022-2259
Citation:

LIU Jiajia,NIE Zishuo,YU Baozhong,et al. Analysis of the mechanism and influencing factors of supercritical carbon dioxide on coal permeability enhancement[J]. Coal Science and Technology,2023,51(2):204−216

. DOI: 10.13199/j.cnki.cst.2022-2259

Analysis of the mechanism and influencing factors of supercritical carbon dioxide on coal permeability enhancement

Funds: 

National Natural Science Foundation of China (52074106); Outstanding Youth Science Fund of Henan Province (232300421061); Innovative Research Team Project of Henan Polytechnic University (T2023-3)

More Information
  • Received Date: December 09, 2022
  • Accepted Date: December 27, 2022
  • Available Online: April 20, 2023
  • Under the current carbon peaking and carbon neutrality background, supercritical carbon dioxide fracturing technology can not only improve the permeability of coal, but also geological storage of carbon dioxide, so it is increasingly valued in the coal field. However, the mechanism and main influencing factors of supercritical carbon dioxide on coal permeability enhancement are not clear, so in order to grasp its mechanism and explore its main influencing factors, it has carried out summary analysis and data processing. Firstly, it is clear that the mechanism of supercritical carbon dioxide to enhance the permeability of coal mainly includes three aspects: the transformation of coal micro-components, the swelling effect on coal matrix and the displacement of gas in coal. Then, the main factors affecting the supercritical carbon dioxide action on coal permeability enhancement are described, including the action temperature, action stress, action time and water content of coal, and the relationship between the main factors and the characteristics of coal is obtained: the porosity and permeability of coal will decrease with the increase of action temperature, but increase with the increase of action stress, action time and water content of coal, and they are in a positive exponential function with the action stress and the short-time soaking time; the mechanical strength of coal will gradually weaken with the increase of action time and water content, and the compressive strength, elastic modulus and tensile strength all conform to the negative exponential function relationship with the action time. Finally, the existing problems of supercritical carbon dioxide on coal permeability enhancement are discussed. It is pointed out that the current researches ignore the influence of soaking times on the effect of supercritical carbon dioxide on coal permeability enhancement, and lack the analysis of main controlling factors and optimal permeability improvement conditions. And the research on the soaking times of supercritical carbon dioxide can be carried out by imitating the soaking experiment of circulating liquid nitrogen, and the main controlling factors and the optimal permeability improvement conditions of supercritical carbon dioxide on coal permeability enhancement can be determined by orthogonal experiment. This has a certain guiding significance for optimizing the supercritical carbon dioxide permeability improvement technology, sequestering carbon dioxide and improving the effect of coal-bed methane extraction.

  • [1]
    林海飞,龙 航,李树刚,等. 煤体瓦斯吸附解吸与压裂渗流全过程真三轴试验系统研发与应用[J]. 岩石力学与工程学报,2022,41(S2):3294−3305. doi: 10.13722/j.cnki.jrme.2021.1144

    LIN Haifei,LONG Hang,LI Shugang,et al. Development and application of true triaxial test system for the whole process of gas adsorption-desorption, fracturing and seepage in coal[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(S2):3294−3305. doi: 10.13722/j.cnki.jrme.2021.1144
    [2]
    康向涛,江明泉,黄 滚,等. 多煤层联合水压裂缝扩展规律应用研究[J]. 采矿与安全工程学报,2021,38(3):602−608. doi: 10.13545/j.cnki.jmse.2020.0586

    KANG Xiangtao,JIANG Mingquan,HUANG Gun,et al. Application research on fracture propagation law of combined hydraulic pressure in multiple coal seams[J]. Journal of Mining & Safety Engineering,2021,38(3):602−608. doi: 10.13545/j.cnki.jmse.2020.0586
    [3]
    ANDREW J Kondash,NANCY E Lauer,AVNER Vengosh. The intensification of the water footprint of hydraulic fracturing[J]. Science Advances,2018,4(8):5982. doi: 10.1126/sciadv.aar5982
    [4]
    刘长友,刘江伟. 煤岩体裂化的弱结构体应力转移原理及应用[J]. 采矿与安全工程学报,2022,39(2):359−369.

    LIU Changyou,LIU Jiangwei. Principle and application of stress transfer of weak structure body in coal-rock mass cracking[J]. Journal of Mining & Safety Engineering,2022,39(2):359−369.
    [5]
    WANG Wei,WEI Yanzhao,GUO Minggong,et al. Coupling technology of deep-hole presplitting blasting and hydraulic fracturing enhance permeability technology in low-permeability and gas outburst coal seam: a case study in the No. 8 Mine of Pingdingshan, China[J]. Advances in Civil Engineering,2021:2021.
    [6]
    ZHANG Yongjiang,YUAN Benqing,NIU Xingang. Response characteristics of coal-like material subjected to repeated hydraulic fracturing: an evaluation based on real-time monitoring of water injection pressure and roof stress distribution[J]. Shock and Vibration,2021,9931137:1−10.
    [7]
    丛日超, 王海柱, 李根生, 等. 超临界CO2聚能压裂开发煤层气可行性研究[J/OL]. 煤炭学报, 2022: 1−10. [2022-10-13]. https://doi.org/10.13225/j.cnki.jccs.SS22.1224.

    CONG Richao, WANG Haizhu, LI Gensheng, et al. Feasibility on exploitation of coalbed methane by SC-CO2 shock fracturing[J/OL]. Journal of China Coal Society, 2022: 1−10. [2022-10-13].https://doi.org/10.13225/j.cnki.jccs.SS22.1224.
    [8]
    张英华,倪 文,尹根成,等. 穿层孔水压爆破法提高煤层透气性的研究[J]. 煤炭学报,2004,29(3):298−302. doi: 10.3321/j.issn:0253-9993.2004.03.010

    ZHANG Yinghua,NI Wen,YIN Gencheng,et al. Study on improving the penetrability of coal seam with the water pressure blasting in the through beds hole[J]. Journal of China Coal Society,2004,29(3):298−302. doi: 10.3321/j.issn:0253-9993.2004.03.010
    [9]
    HUANG Changguo,ZHANG Yuebing,HE Jiangfu,et al. Permeability improvements of an outburst‐prone coal seam by means of presplitting and blasting with multiple deep boreholes[J]. Energy Science & Engineering,2019,7(5):2223−2236.
    [10]
    王兆丰,王 林,陈向军. 深孔预裂爆破在高瓦斯特厚煤层回采中的应用[J]. 煤炭科学技术,2008,36(8):31−33,72. doi: 10.13199/j.cst.2008.08.36.wangzhf.017

    WANG Zhaofeng,WANG Lin,CHEN Xiangjun. Application of deep borehole pre-cracking blasting to coal mining in high gassy and ultra thick seam[J]. Coal Science and Technology,2008,36(8):31−33,72. doi: 10.13199/j.cst.2008.08.36.wangzhf.017
    [11]
    CHEN Xianzhan,XUE Sheng,YUAN Liang. Coal seam drainage enhancement using borehole presplitting basting technology-A case study in Huainan[J]. International Journal of Mining Science and Technology,2017,27(5):771−775.
    [12]
    张晓刚,姜文忠,都 锋. 高瓦斯低透气性煤层增透技术发展现状及前景展望[J]. 煤矿安全,2021,52(2):169−176. doi: 10.13347/j.cnki.mkaq.2021.02.033

    ZHANG Xiaogang,JIANG Wenzhong,DU Feng. Development status and prospect of permeability enhancement technology in high gas low permeability coal seam[J]. Safety in Coal Mines,2021,52(2):169−176. doi: 10.13347/j.cnki.mkaq.2021.02.033
    [13]
    桑树勋,袁 亮,刘世奇,等. 碳中和地质技术及其煤炭低碳化应用前瞻[J]. 煤炭学报,2022,47(4):1430−1451.

    SANG Shuxun,YUAN Liang,LIU Shiqi,et al. Geological technology for carbon neutrality and its application prospect for low carbon coal exploitation and utilization[J]. Journal of China Coal Society,2022,47(4):1430−1451.
    [14]
    张军建, 常象春, 吕大炜, 等. 双碳目标下煤层发育区二氧化碳地质封存研究与评价[J/OL]. 煤炭科学技术, 2022: 1−11. [2022-03-13]. https://doi.org/10.13199/j.cnki.cst.2022-0538.

    ZHANG Junjian, CHANG Xiangchun, LYU Dawei, et al. Carbon dioxide geological storage system in coal seam development area under the premise of double carbon target[J/OL]. Coal Science and Technology, 2022: 1−11. [2022-03-13]. https://doi.org/10.13199/j.cnki.cst.2022-0538.
    [15]
    李 畅,梁卫国,侯东升,等. 水、ScCO2致裂煤体裂纹形态与形成机制研究[J]. 岩石力学与工程学报,2020,39(4):761−772.

    LI Chang,LIANG Weiguo,HOU Dongsheng,et al. Morphology and formation mechanism of fractures in coal using hydraulic/ScCO2 fracturing[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(4):761−772.
    [16]
    YAN Hao,ZHANG Jixiong,LI Baiyi,et al. Crack propagation patterns and factors controlling complex crack network formation in coal bodies during tri-axial supercritical carbon dioxide fracturing[J]. Fuel,2021,286:1−9.
    [17]
    严家平,李建楼. 声波作用对煤体瓦斯渗透性影响的实验研究[J]. 煤炭学报,2010,35(S1):81−85. doi: 10.13225/j.cnki.jccs.2010.s1.028

    YAN Jiaping,LI Jianlou. Experimental study of acoustic effects on coal gas permeability[J]. Journal of China Coal Society,2010,35(S1):81−85. doi: 10.13225/j.cnki.jccs.2010.s1.028
    [18]
    ZHANG Guanglei,RANJITH P G,PERERA M S A,et al. Quantitative analysis of micro-structural changes in a bituminous coal after exposure to supercritical CO2 and water[J]. Natural Resources Research,2019,28(4):1639−1660.
    [19]
    CHEN Kang,LIU Xianfeng,WANG Longkang,et al. Influence of sequestered supercritical CO2 treatment on the pore size distribution of coal across the rank range[J]. Fuel,2021,121708:1−10.
    [20]
    张登峰,李 超,李艳红,等. 封存过程中CO2流体与煤中矿物作用关系研究进展[J]. 安全与环境学报,2020,20(1):297−309.

    ZHANG Dengfeng,LI Chao,LI Yanhong,et al. Research review on the interaction of CO2 fluid with the minerals in the process of CO2 sequestration in coal seams[J]. Journal of Safety and Environment,2020,20(1):297−309.
    [21]
    KRZYSZTOF Labus,PETR Bujok. CO2 mineral sequestration mechanisms and capacity of saline aquifers of the Upper Silesian Coal Basin (Central Europe)-Modeling and experimental verification[J]. Energy,2011,36(8):4974−4982.
    [22]
    郝盼云,孟艳军,曾凡桂,等. 红外光谱定量研究不同煤阶煤的化学结构[J]. 光谱学与光谱分析,2020,40(3):787−792.

    HAO Panyun,MENG Yanjun,ZENG Fangui,et al. Quantitative study of chemical structures of different rank coals based on infrared spectroscopy[J]. Spectroscopy and Spectral Analysis,2020,40(3):787−792.
    [23]
    刘世奇,王 恬,杜 艺,等. 超临界CO2对烟煤和无烟煤化学结构的影响[J]. 煤田地质与勘探,2018,46(5):19−25. doi: 10.3969/j.issn.1001-1986.2018.05.003

    LIU Shiqi,WANG Tian,DU Yi. The effects of supercritical CO2 on the chemical structure of bituminous coal and anthracite[J]. Coal Gelogy & Exploration,2018,46(5):19−25. doi: 10.3969/j.issn.1001-1986.2018.05.003
    [24]
    CHENG Yugang,ZENG Mengru,LU Zhaohui,et al. Effects of supercritical CO2 treatment temperatures on mineral composition, pore structure and functional groups of shale: implications for CO2 sequestration[J]. Sustainability,2020,12(9):1−22.
    [25]
    ZHANG Guanglei,RANJITH P. G.,LI Zhongsheng,et al. Application of synchrotron ATR-FTIR microspectroscopy for chemical characterization of bituminous coals treated with supercritical CO2[J]. Fuel,2021,120639:1−8.
    [26]
    曾梦茹. 不同温度超临界CO2条件下煤微观结构特征及改造机理研究[D]. 重庆: 重庆大学, 2020.

    ZENG Mengru. Study on the coal microstructural characteristics and transformation mechanism treated by supercritical CO2 at different temperatures[D]. Chongqing: Chongqing University, 2020.
    [27]
    张宇杰,郭红光,李治刚,等. 超临界CO2萃取提高褐煤生物甲烷产气模拟实验[J]. 煤炭学报,2021,46(10):3278−3285.

    ZHANG Yujie,GUO Hongguang,LI Zhigang,et al. Promoted microbial degradation of lignite by supercritical CO2 extraction to enhance coalbed methane production[J]. Journal of China Coal Society,2021,46(10):3278−3285.
    [28]
    袁 梅,陈 恋,吕 晴,等. 酸化下无烟煤化学结构响应及吸附性能影响研究[J]. 安全与环境学报,2022,22(1):132−141.

    YUAN Mei,CHEN Lian,LYU Qing,et al. Study on the chemical structure response and adsorption properties of anthracite under acidification[J]. Journal of Safety and Environment,2022,22(1):132−141.
    [29]
    柳先锋,宋大钊,何学秋,等. 微结构对软硬煤瓦斯吸附特性的影响[J]. 中国矿业大学学报,2018,47(1):155−161.

    LIU Xianfeng,SONG Dazhao,HE Xueqiu,et al. Effect of microstructures on methane adsorption characteristics of soft and hard coal[J]. Journal of China University of Mining & Technology,2018,47(1):155−161.
    [30]
    ZENG Jie,LIU Jishan,LI Wai,et al. A process-based coal swelling model: Bridging the gaps between localized swelling and bulk swelling[J]. Fuel,2021,120360:1−12.
    [31]
    梁卫国,张倍宁,韩俊杰,等. 超临界CO2驱替煤层CH4装置及试验研究[J]. 煤炭学报,2014,39(8):1511−1520.

    LIANG Weiguo,ZHANG Beining,HAN Junjie,et al. Experimental study on coal bed methane displacement and recovery by supercritical carbon dioxide injection[J]. Journal of China Coal Society,2014,39(8):1511−1520.
    [32]
    王倩倩,张登峰,王浩浩,等. 封存过程中二氧化碳对煤体理化性质的作用规律[J]. 化工进展,2015,34(1):258−265. doi: 10.16085/j.issn.1000-6613.2015.01.046

    WANG Qianqian,ZHANG Dengfeng,WANG Haohao,et al. Effect of CO2 on physico-chemical characteristics of coal during sequestration process: A perspective[J]. Chemical Industry and Engineering Progress,2015,34(1):258−265. doi: 10.16085/j.issn.1000-6613.2015.01.046
    [33]
    刘 勇,张东鑫,张宏图,等. 超临界二氧化碳射流冲击短时浸泡煤体破坏特征分析[J]. 煤炭学报,2022,47(9):3310−3319. doi: 10.13225/j.cnki.jccs.ss22.0748

    LIU Yong,ZHANG Dongxin,ZHANG Hongtu,et al. Analysis of damage characteristics of supercritical carbon dioxide jet impact short time soaking coal body[J]. Journal of China Coal Society,2022,47(9):3310−3319. doi: 10.13225/j.cnki.jccs.ss22.0748
    [34]
    WANG Chunguang,ZHANG Jidong,CHEN Junguo,et al. Understanding competing effect between sorption swelling and mechanical compression on coal matrix deformation and its permeability[J]. International Journal of Rock Mechanics and Mining Sciences,2021,104639:1−12.
    [35]
    王浩浩,张登峰,王倩倩,等. 深部煤层封存CO2过程中的煤基质溶胀效应[J]. 化工进展,2015,34(7):2031−2038,2069.

    WANG Haohao,ZHANG Dengfeng,WANG Qianqian,et al. Coal matrix swelling during CO2 sequestration in deep coal seams: A perspective[J]. Chemical Industry and Engineering Progress,2015,34(7):2031−2038,2069.
    [36]
    王翠霞,李树刚. 煤体孔隙结构分形特征对瓦斯解吸规律的影响研究[J]. 西安科技大学学报,2016,36(3):308−314.

    WANG Cuixia,LI Shugang. Pore structure characteristics and its influence on gas desorption of low rank coal[J]. Journal of Xi’an University of Science and Technology,2016,36(3):308−314.
    [37]
    桑树勋,朱炎铭,张时音,等. 煤吸附气体的固气作用机理(Ⅰ): 煤孔隙结构与固气作用[J]. 天然气工业,2005(1):13−15,205.

    SANG Shuxun,ZHU Yanming,ZHANG Shiyin,et al. Solid gas interaction mechanism of coal adsorbed gas (Ⅰ): coal pore structure and solid gas interaction[J]. Natural Gas Industry,2005(1):13−15,205.
    [38]
    魏则宁,翟 成,孙 勇,等. 液氮冷冲击时长对煤体致裂效果的影响[J]. 中国矿业大学学报,2022,51(2):273−282.

    WEI Zening,ZHAI Cheng,SUN Yong,et al. The influence of cold shock duration of liquid nitrogen on the fracturing effect of coal[J]. Journal of China University of Mining & Technology,2022,51(2):273−282.
    [39]
    WANG Rui,WANG Qizhi,NIU Qinghe,et al. CO2 adsorption and swelling of coal under constrained conditions and their stage-change relationship[J]. Journal of Natural Gas Science and Engineering,2019,76:1−14.
    [40]
    张淑同,王 波,曹 偈,等. 型煤吸附解吸二氧化碳与甲烷的性能对比试验研究[J]. 矿业安全与环保,2016,43(5):5−8. doi: 10.3969/j.issn.1008-4495.2016.05.002

    ZHANG Shutong,WANG Bo,CAO Jie,et al. Comparative tests of carbon dioxide and methane adsorption-desorption characteristics of briquette coal[J]. Mining Safety & Environmental Protection,2016,43(5):5−8. doi: 10.3969/j.issn.1008-4495.2016.05.002
    [41]
    QIN Chao,JIANG Yongdong,CAO Mengyao,et al. Experimental study on the methane desorption-diffusion behavior of Longmaxi shale exposure to supercritical CO2[J]. Energy,2023,262:1−12.
    [42]
    吕乾龙,刘 伟,宋奕澎,等. 无烟煤对CO2和CH4的吸附解吸特性研究[J]. 煤矿安全,2019,50(5):27−30.

    LYU Qianlong,LIU Wei,SONG Yipeng,et al. Adsorption and desorption characteristics of CO2 and CH4 for anthracite[J]. Safety in Coal Mines,2019,50(5):27−30.
    [43]
    WANG Meng,HUANG Kai,XIE Weidong,et al. Current research into the use of supercritical CO2 technology in shale gas exploitation[J]. International Journal of Mining Science and Technology,2019,29(5):739−744. doi: 10.1016/j.ijmst.2018.05.017
    [44]
    邓博知. 二氧化碳压裂增透煤层及驱替煤层甲烷机理研究[D]. 重庆: 重庆大学, 2018.

    DENG Bozhi. Research on the mechanism of carbon dioxide fracturing in coalbeds and displacing coalbed methane[D]. Chongqing: Chongqing University, 2018.
    [45]
    张 琦,陈新国,姚振东. 超临界CO2驱替瓦斯的试验研究[J]. 煤炭技术,2018,37(1):160−162.

    ZHANG Qi,CHEN Xinguo,YAO Zhendong. Experimental study on supercritical CO2 displacement gas[J]. Coal Technology,2018,37(1):160−162.
    [46]
    LI Mingxue,LONG Yonghan,GUO Lucheng,et al. An Experimental Study on CO2 Displacing CH4 Effects of Different Rank Coals[J]. Geofluids,2022:1−13.
    [47]
    LI Zhenbao,WEI Gaoming,LIANG Rui,et al. LCO2-ECBM technology for preventing coal and gas outburst: Integrated effect of permeability improvement and gas displacement[J]. Fuel,2021,285:1−10.
    [48]
    郑爱玲,王新海,刘德华. 注气驱替煤层气数值模拟研究[J]. 石油钻探技术,2006,34(2):55−57. doi: 10.3969/j.issn.1001-0890.2006.02.017

    ZHENG Ailing,WANG Xinhai,LIU Dehua. Research on numerical simulation of enhanced coalbed[J]. Petroleum Drilling Techniques,2006,34(2):55−57. doi: 10.3969/j.issn.1001-0890.2006.02.017
    [49]
    吴 迪. 二氧化碳驱替煤层瓦斯机理与实验研究[D]. 太原: 太原理工大学, 2010.

    WU Di. Mechanism and experimental study on coal-bed methane displacement by carbon dioxide[D]. Taiyuan: Taiyuan University of Technology, 2010.
    [50]
    SUN Xiaoxiao,YAO Yanbin,LIU Dameng. The behavior and efficiency of methane displaced by CO2 in different coals and experimental conditions[J]. Journal of Natural Gas Science and Engineering,2021,93:1−13.
    [51]
    LI Ruihui,GE Zhaolong,WANG Zepeng,et al. Effect of supercritical carbon dioxide (ScCO2) on the microstructure of bituminous coal with different moisture contents in the process of ScCO2 enhanced coalbed methane and CO2 geological sequestration[J]. Energy & Fuels,2022,36(7):3680−3694.
    [52]
    李全中,倪小明,王延斌,等. 超临界状态下煤岩吸附/解吸二氧化碳的实验[J]. 煤田地质与勘探,2014,42(3):36−39. doi: 10.3969/j.issn.1001-1986.2014.03.008

    LI Quanzhong,NI Xiaoming,WANG Yanbin,et al. The experimental study on the adsorption/desorption of carbon dioxide in the coal under supercritical condition[J]. Coal Gelogy & Exploration,2014,42(3):36−39. doi: 10.3969/j.issn.1001-1986.2014.03.008
    [53]
    WANG Jin,WANG Zhuangsen,WANG Yanbin,et al. CO2 replacing CH4 behaviors under sub- and supercritical conditions[J]. Energy & Fuels,2020,34(4):4353−4365.
    [54]
    LI Jiawei,SUN Chenhao. Molecular insights on competitive adsorption and enhanced displacement effects of CO2/CH4 in coal for low-carbon energy technologies[J]. Energy,2022,261:1−16.
    [55]
    丁 璐,倪红坚. 超临界二氧化碳浸泡对页岩力学性能的影响[J]. 科学技术与工程,2019,19(30):122−127. doi: 10.3969/j.issn.1671-1815.2019.30.017

    DING Lu,NI Hongjian. Effects of supercritical carbon dioxide immersion on mechanical properties of shale[J]. Science Technology and Engineering,2019,19(30):122−127. doi: 10.3969/j.issn.1671-1815.2019.30.017
    [56]
    杜玉昆,庞 飞,陈 科,等. 超临界二氧化碳喷射破碎页岩试验[J]. 地球科学,2019,44(11):3749−3756.

    DU Yukun,PANG Fei,CHEN Ke,et al. Experiment of breaking shale using supercritical carbon dioxide jet[J]. Earth Science,2019,44(11):3749−3756.
    [57]
    倪红坚,郭 兴,丁 璐,等. 超临界二氧化碳浸泡对页岩力学性质影响的实验[J]. 中国石油大学学报(自然科学版),2019, 43(2): 77-84,43(2):77−84.

    NI Hongjian,GUO Xing,DING Lu,et al. Experiment on mechanical properties of shale soaked with supercritical carbon dioxide[J]. Journal of China University of Petroleum (Edition of Natural Science),2019, 43(2): 77-84,43(2):77−84.
    [58]
    何立国,杨 栋. 超临界CO2对煤体力学特性劣化影响研究[J]. 矿业研究与开发,2021,41(2):94−99.

    HE Liguo,YANG Dong. Study on the degradation effect of supercritical CO2 on the coal mechanical properties[J]. Mining Research and Development,2021,41(2):94−99.
    [59]
    FANG Huihuang,SANG Shuxun,LIU Shiqi,et al. Experimental simulation of replacing and displacing CH4 by injecting supercritical CO2 and its geological significance[J]. International Journal of Greenhouse Gas Control,2019,181:115−125.
    [60]
    杜 艺,桑树勋,王文峰. 超临界CO2注入煤岩地球化学效应研究评述[J]. 煤炭科学技术,2018,46(3):10−18.

    DU Yi,SANG Shuxun,WANG Wenfeng. Study and review on geochemical effect of coal and rock injected with supercritical CO2[J]. Coal Science and Technology,2018,46(3):10−18.
    [61]
    GE Zhaolong,ZENG Mengru,CHENG Yugang,et al. Effects of Supercritical CO2 Treatment Temperature on Functional Groups and Pore Structure of Coals[J]. Sustainability,2019,11(24):1−16.
    [62]
    FU Yongshuai,LIU Xianfeng,GE Boqing,et al. Role of chemical structures in coalbed methane adsorption for anthracites and bituminous coals[J]. Adsorption,2017,23(5):711−721.
    [63]
    郝志勇,岳立新,孙可明,等. 超临界CO2温变对低渗透煤层孔渗变化的实验研究[J]. 煤田地质与勘探,2018,46(3):64−71. doi: 10.3969/j.issn.1001-1986.2018.03.012

    HAO Zhiyong,YUE Lixin,SUN Keming,et al. Experiment study on the porosity and permeability of low permeability coal by supercritical CO2 temperature variation[J]. Coal Gelogy & Exploration,2018,46(3):64−71. doi: 10.3969/j.issn.1001-1986.2018.03.012
    [64]
    岳立新,孙可明. 超临界CO2作用后煤微观结构与渗透率变化规律实验研究[J]. 实验力学,2017,32(3):397−406.

    YUE Lixin,SUN Keming. Experimental study of coal microstructure and permeability variation after of supercritical CO2 penetration[J]. Journal of Experimental Mechanics,2017,32(3):397−406.
    [65]
    WU Di,LIU Xueying,LIANG Bing,et al. Experiments on Displacing Methane in Coal by Injecting Supercritical Carbon Dioxide[J]. Energy & Fuels,2018,32(12):12766−12771.
    [66]
    吴 迪,王翰阳,苗 丰,等. 超临界CO2作用下CO2渗流特性与煤层增透效果研究[J]. 煤炭科学技术,2020,48(10):90−96.

    WU Di,WANG Hanyang,MIAO Feng,et al. Study on CO2 seepage characteristics and permeability enhancement effect of coal seam under supercritical CO2 condition[J]. Coal Science and Technology,2020,48(10):90−96.
    [67]
    LU Zhaohui,JIA Yunzhong,ZHOU Jiankun,et al. The permeability alternation of shale fractures due to Sc-CO2 soaking: implications for Sc-CO2 fracturing and deep CO2 sequestration in shale reservoirs[J]. Advances in Materials Science and Engineering,2022:1−12.
    [68]
    张志忠. 超临界CO2对低渗透煤层渗透率影响试验研究[J]. 江西煤炭科技,2021(3):174−175, 178.

    ZHANG Zhizhong. Experimental study on the effect of supercritical CO2 on the permeability of low permeability coal seams[J]. Jiangxi Coal Science & Technology,2021(3):174−175, 178.
    [69]
    岳立新,孙可明. 超临界CO2作用时间对煤渗透率和孔隙率的影响规律研究[J]. 应用力学学报,2018,35(5):1170−1176,1194.

    YUE Lixin,SUN Keming. The influence law of action time by supercritical CO2 on permeability and porosity of coal[J]. Chinese Journal of Applied Mechanics,2018,35(5):1170−1176,1194.
    [70]
    梁卫国,贺 伟,阎纪伟. 超临界CO2致煤岩力学特性弱化与破裂机理[J]. 煤炭学报,2022,47(7):2557−2568.

    LIANG Weiguo,HE Wei,YAN Jiwei. Weakening and fracturing mechanism of mechanical properties of coal and rock caused by supercritical CO2[J]. Journal of China Coal Society,2022,47(7):2557−2568.
    [71]
    WANG Lei,YANG Dong,MENG Qiaorong,et al. Effects of supercritical carbon dioxide under different conditions on mechanical properties and energy evolution of coal[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources,2022,8(3):1−12.
    [72]
    肖 畅,王 开,张小强,等. 超临界CO2作用后无烟煤力学损伤演化特性及机理[J]. 煤炭学报,2022,47(6):2340−2351.

    XIAO Chang,WANG Kai,ZHANG Xiaoqiang,et al. Mechanical damage evolution characteristics and mechanism of anthracite treated with supercritical CO2[J]. Journal of China Coal Society,2022,47(6):2340−2351.
    [73]
    FENG Gan,KANG Yong,SUN Zedong,et al. Effects of supercritical CO2 adsorption on the mechanical characteristics and failure mechanisms of shale[J]. Energy,2019,173:870−882.
    [74]
    SONG Yao,ZOU Quanle,SU Erlei,et al. Changes in the microstructure of low-rank coal after supercritical CO2 and water treatment[J]. Fuel,2020,279:1−13.
    [75]
    秦 雷, 马 超, 李树刚, 等. 液氮作用下冻结态与融化态煤体力学特征及劣化机理[J/OL]. 采矿与安全工程学报, 2022: 1−13. [2023-03-23]. http://kns.cnki.net/kcms/detail/32.1760.TD.20221021.1652.002.html.

    QIN Lei, MA Chao, LI Shugang, et al. Mechanical characteristics and deterioration mechanism of frozen and melted coal under the action of liquid nitrogen[J/OL]. Journal of Mining & Safety Engineering, 2022:1−13. [2023-03-23]. http://kns.cnki.net/kcms/detail/32.1760.TD.20221021.1652.002.html.
    [76]
    张 磊,田苗苗,薛俊华,等. 液氮循环处理对不同含水率煤样渗流特性的影响[J]. 煤炭学报,2021,46(S1):291−301.

    ZHANG Lei,TIAN Miaomiao,XUE Junhua,et al. Effect of liquid nitrogen cycle treatment on seepage characteristics of coal samples with different water contents[J]. Journal of China Coal Society,2021,46(S1):291−301.
  • Cited by

    Periodical cited type(3)

    1. 王旭东,闫祖喻,唐佳伟,张锁,郭强,刘小庆,陈明聪,李井峰. 新街台格庙矿区首采井田矿井水水化学特征及数值模拟预测. 中国煤炭. 2024(07): 154-163 .
    2. 李胜涛,施金宇,丁欣明,岳冬冬,路莹. 白洋淀地表水回灌补给深部岩溶地热储层的水化学数值模拟. 中国环境科学. 2024(10): 5830-5838 .
    3. 李昂,吕伟,景长生,丁学松,刘军亮,冯碧野,范六一. 平煤西部矿区水-岩共生地下水化学特征. 西安科技大学学报. 2024(06): 1154-1164 .

    Other cited types(0)

Catalog

    Article views (240) PDF downloads (87) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return