ZHU Zhijie,LI Ruiqi,TANG Guoshui,et al. Research on energy dissipation characteristics and coal burst tendency of fissured coal mass[J]. Coal Science and Technology,2023,51(5):32−44
. DOI: 10.13199/j.cnki.cst.2022-2242Citation: |
ZHU Zhijie,LI Ruiqi,TANG Guoshui,et al. Research on energy dissipation characteristics and coal burst tendency of fissured coal mass[J]. Coal Science and Technology,2023,51(5):32−44 . DOI: 10.13199/j.cnki.cst.2022-2242 |
Coal burst tendency is the natural property of whether coal rock mass can have coal burst, and the distribution of fissures has an important influence on it. In order to study the influence mechanism of the original coal fissures on the energy dissipation characteristics and coal burst tendency, the PFC2D numerical simulation method was used to conduct uniaxial compression tests on coal specimens with different fracture types. The results show that: ①With the increase of the inclination angle of the fissure, the compressive strength and elastic modulus of the macroscopic mechanical parameters show a trend of decreasing first and then increasing; when the inclination angle of the fissure is 30, both of them reach the minimum value. The relationship between the macro-mechanical parameters of different fracture types is: non-coplanar parallel double-fissure specimen < single-fissure specimen < co-planar discontinuous double-fissure specimen.②The variation law of elastic strain energy and total strain energy is similar to that of macroscopic mechanical parameters. The parallel and non-coplanar fracture specimens form an energy dissipation structure between the fissures, and the coplanar discontinuous double-fissure specimen forms an energy concentration area between the fissures, revealing the intrinsic reason for the relationship between the elastic energy of different fracture types. ③The coal burst tendency is analyzed from the two perspectives of the ability of coal and rock to store elastic energy and the ability to release elastic energy after failure, and two coal burst tendency indicators, elastic energy storage rate and elastic energy release rate, are proposed. ④With the increase of the fissure inclination angle, both the elastic energy storage rate and the elastic energy release rate showed a trend of first decreasing and then increasing; when the fissure inclination angle was 30, the two coal burst propensity indexes both achieved the minimum value. The relationship between the coal burst tendency of different fracture types is: non-coplanar parallel double-fissure specimen < single-fissure specimen < co-planar discontinuous double-fissure specimen. The distribution of fissures has a significant coal burst on the coal burst tendency of coal mass, and the factor of fissures should be considered in the evaluation of the coal burst tendency of coal and rock mass and the prevention and control of rock burst.
[1] |
宫凤强,赵英杰,王云亮,等. 煤的冲击倾向性研究进展及冲击地压“人-煤-环”三要素机理[J]. 煤炭学报,2022,47(5):1974−2010. doi: 10.13225/j.cnki.jccs.2022.0165
GONG Fengqiang,ZHAO Yingjie,WANG Yunliang,et al. Research progress of coal bursting liability indices and coal burst “Human-Coal-Environment” three elements mechanism[J]. Journal of China Coal Society,2022,47(5):1974−2010. doi: 10.13225/j.cnki.jccs.2022.0165
|
[2] |
潘俊锋,宁 宇,毛德兵,等. 煤矿开采冲击地压启动理论[J]. 岩石力学与工程学报,2012,31(3):586−596. doi: 10.3969/j.issn.1000-6915.2012.03.017
PAN Junfeng,NING Yu,MAO Debing,et al. Theory of rockburst start-up during coal mining[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(3):586−596. doi: 10.3969/j.issn.1000-6915.2012.03.017
|
[3] |
赵毅鑫,姜耀东,张 雨. 冲击倾向性与煤体细观结构特征的相关规律[J]. 煤炭学报,2007,32(1):64−68. doi: 10.3321/j.issn:0253-9993.2007.01.014
ZHAO Yixing,JIANG Yaodong,ZHANG Yu. The relationship between bump prone property and microstructure characteristics of coal[J]. Journal of China Coal Society,2007,32(1):64−68. doi: 10.3321/j.issn:0253-9993.2007.01.014
|
[4] |
赵同彬,尹延春,谭云亮,等. 基于颗粒流理论的煤岩冲击倾向性细观模拟试验研究[J]. 煤炭学报,2014,39(2):280−285.
ZHAO Tongbin,YIN Yanchun,TAN Yunliang,et al. Bursting liability of coal research of heterogeneous coal based on particle flow microscopic test[J]. Journal of China Coal Society,2014,39(2):280−285.
|
[5] |
冯增朝, 赵阳升. 岩石非均质性与冲击倾向的相关规律研究[J]. 岩石力学与工程学报, 2003, 22(11): 1863–1865.
FENG Zengchao, ZHAO Yangsheng. Correlativity of rock inhomogeneity and rock burst trend[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(11): 1863–1865.
|
[6] |
孟召平,潘结南,刘亮亮,等. 含水量对沉积岩力学性质及其冲击倾向性的影响[J]. 岩石力学与工程学报,2009,28(S1):2637−2643.
MENG Zhaoping,PAN Jienan,LIU Liangliang,et al. Influence of moisture contents on mechanical properties of sedimentary rock and its bursting potential[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(S1):2637−2643.
|
[7] |
张志镇, 高 峰, 刘治军. 温度影响下花岗岩冲击倾向及其微细观机制研究[J]. 岩石力学与工程学报, 2010, 29(8): 1591–1602.
ZHANG Zhizhen, GAO Feng, LIU Zhijun. Research on rock bursts proneness and its microcosmic mechanism of granite considering temperature effect[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(8): 1591–1602.
|
[8] |
张广辉,欧阳振华,齐庆新,等. 瓦斯对煤冲击倾向性影响的试验研究[J]. 煤炭学报,2017,42(12):3159−3165.
ZHANG Guanghui,OUYANG Zhenhua,QI Qingxin,et al. Experimental research on the influence of gas on coal burst tendency[J]. Journal of China Coal Society,2017,42(12):3159−3165.
|
[9] |
LIU X,WANG X,WANG E,et al. Effects of gas pressure on bursting liability of coal under uniaxial conditions[J]. Journal of Natural Gas Science and Engineering,2017,39:90−100. doi: 10.1016/j.jngse.2017.01.033
|
[10] |
YI X,FENG G,TENG T,et al. Effect of gas pressure on rock burst proneness indexes and energy dissipation of coal samples[J]. Geotechnical and Geological Engineering,2016,34(6):1−12.
|
[11] |
左建平,陈 岩,崔 凡. 不同煤岩组合体力学特性差异及冲击倾向性分析[J]. 中国矿业大学学报,2018,47(1):81−87.
ZUO Jianping,CHEN Yan,CUI Fan. Investigation on mechanical properties and rock burst tendency of different coal-rock combined bodies[J]. Journal of China University of Mining & Technology,2018,47(1):81−87.
|
[12] |
邓志刚. 冲击倾向性煤体强度尺寸效应的影响因素研究[J]. 煤炭科学技术,2019,47(8):59−63.
DENG Zhigang. Study on influencing factors of strength size effect based on bump-prone coal[J]. Coal Science and Technology,2019,47(8):59−63.
|
[13] |
SONG H,JIANG Y,ELSWORTH D,et al. Scale effects and strength anisotropy in coal[J]. International Journal of Coal Geology,2018,195:37−46. doi: 10.1016/j.coal.2018.05.006
|
[14] |
GAO F,STEAD D,KANG H. Numerical investigation of the scale effect and anisotropy in the strength and deformability of coal[J]. International Journal of Coal Geology,2014,136:25−37. doi: 10.1016/j.coal.2014.10.003
|
[15] |
卢志国,鞠文君,王 浩,等. 硬煤冲击倾向各向异性特征及破坏模式试验研究[J]. 岩石力学与工程学报,2019,38(4):757−768.
LU Zhiguo,JU Wenjun,WANG Hao,et al. Experimental study on anisotropic characteristics of impact tendency and failure model of hard coal[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(4):757−768.
|
[16] |
郝宪杰,袁 亮,王少华,等. 硬煤冲击倾向性的层理效应研究[J]. 煤炭科学技术,2018,46(5):1−7.
HAO Xianjie,YUAN Liang,WANG Shaohua,et al. Study on bedding effect of bump tendency for hard coal[J]. Coal Science and Technology,2018,46(5):1−7.
|
[17] |
李 磊,李宏艳,李凤明,等. 层理角度对硬煤冲击倾向性影响的实验研究[J]. 采矿与安全工程学报,2019,36(3):987−994. doi: 10.13545/j.cnki.jmse.2019.05.016
LI Lei,LI Hongyan,LI Fengming,et al. Experimental study on anisotropic characteristics of impact tendency and failure model of hard coal[J]. Chinese Journal of Rock Mechanics and Engineering,2019,36(3):987−994. doi: 10.13545/j.cnki.jmse.2019.05.016
|
[18] |
SZECOWKA Z, DOMZAL J, OZANA P. Energy index of natural bursting ability of coal [J]. Transactions of the Central Mining Institute, 1973, 594.
|
[19] |
GIL H, DRZEZLA B. Methods for determining bursting liability of coal [J]. Przegl Górn, 1973: 12.
|
[20] |
SINGH S P. Burst energy release index[J]. Rock Mechanics & Rock Engineering,1988,21(2):149−155.
|
[21] |
唐礼忠,潘长良,王文星. 用于分析岩爆倾向性的剩余能量指数[J]. 中南工业大学学报(自然科学版),2002,33(2):129−132.
TANG Lizhong,PAN Changliang,WANG Wenxing. Surplus energy index for analysing rockburst proneness[J]. Journal of Central South University of Technology,2002,33(2):129−132.
|
[22] |
张绪言,冯国瑞,康立勋,等. 用剩余能量释放速度判定煤岩冲击倾向性[J]. 煤炭学报,2009,34(9):1165−1168. doi: 10.3321/j.issn:0253-9993.2009.09.003
ZHANG Xuyan,FENG Guorui,KANG Lixun,et al. Method to determine burst tendency of coal rock by residual energy emission speed[J]. Journal of China Coal Society,2009,34(9):1165−1168. doi: 10.3321/j.issn:0253-9993.2009.09.003
|
[23] |
陈卫忠,吕森鹏,郭小红,等. 基于能量原理的卸围压试验与岩爆判据研究[J]. 岩石力学与工程学报,2009,28(8):1530−1540. doi: 10.3321/j.issn:1000-6915.2009.08.003
CHEN Weizhong,LYU Senpeng,GUO Xiaohong,et al. Research on unloading confining pressure tests and rockburst criterion based on enrgy theory[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(8):1530−1540. doi: 10.3321/j.issn:1000-6915.2009.08.003
|
[24] |
卢志国, 鞠文君, 高富强, 等. 基于非线性储能与释放特征的煤冲击倾向性指标[J]. 岩石力学与工程学, 2021, 40(8): 1559−1569 .
LU Zhiguo, JU Wenjun, GAO Fuqiang, et al. Bursting liability index of coal based on nonlinear storage and release characteristics of elastic energy, 2021, 40(8): 1559−1569.
|
[25] |
宫凤强, 闫景一, 李夕兵. 基于线性储能规律和剩余弹性能指数的岩爆倾向性判据[J]. 岩石力学与工程学报, 2018, 37(9): 1993–2014.
GONG Fengqiang, YAN Jingyi, LI Xibing. A new criterion of rock burst proneness based on the linear energy storage law and the residual elastic energy index[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(9): 1993–2014.
|
[26] |
王 超. 基于 有效冲击能量速率的煤层冲击倾向性指数研究[J]. 煤矿开采,2017,22(5):9−12.
WANG Chao. Study of coal seam rock burst tendency index under effectively impact energy rate[J]. Coal Mining Technology,2017,22(5):9−12.
|
[27] |
唐礼忠,王文星. 一种新的岩爆倾向性指标[J]. 岩石力学与工程学报,2002,21(6):874−878. doi: 10.3321/j.issn:1000-6915.2002.06.022
TANG Lizhong,WANG Wenxing. New rock burst proneness index[J]. Chinese Journal of Rock Mechanics and Engineering,2002,21(6):874−878. doi: 10.3321/j.issn:1000-6915.2002.06.022
|
[28] |
GONG F,YAN J,LI X,et al. A peak-strength strain energy storage index for rock burst proneness of rock materials[J]. International Journal of Rock Mechanics and Mining Sciences,2019,117:76−89. doi: 10.1016/j.ijrmms.2019.03.020
|
[29] |
GONG Fengqiang,WANG Yunliang,WANG Zhiguo,et al. A new criterion of coal burst proneness based on the residual elastic energy index[J]. International Journal of Mining Science and Technology,2021,31(4):553−563. doi: 10.1016/j.ijmst.2021.04.001
|
[30] |
姚精明,闫永业,李生舟,等. 煤层冲击倾向性评价损伤指标[J]. 煤炭学报,2011,36(S2):353−357.
YAO Jingming,YAN Yongye,LI Shengzhou,et al. Damage index of coal seam rock burst proneness[J]. Journal of China Coal Society,2011,36(S2):353−357.
|
[31] |
HOMAND F,PIGUET J P,REVALOR R. Dynamic phenomena in mines and characteristics of rocks[J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts,1992,29(1):A69.
|
[32] |
张万斌,王淑坤,吴耀焜,等. 以动态破坏时间鉴定煤的冲击倾向[J]. 煤炭科学技术,1986,14(3):31−34.
ZHANG Wanbin,WANG Shukun,WU Yaokun,et al. To determine proneness of coal burst by dynamic failure time[J]. Coal Science and Technology,1986,14(3):31−34.
|
[33] |
潘一山,耿 琳,李忠华. 煤层冲击倾向性与危险性评价指标研究[J]. 煤炭学报,2010,35(22):1975−1978.
PAN Yishan,GENG Lin,LI Zhonghua. Research on evaluation indices for impact tendency and danger of coal seam[J]. Journal of China Coal Society,2010,35(22):1975−1978.
|
[34] |
代树红,王晓晨,潘一山,等. 模量指数评价煤的冲击倾向性的实验研究[J]. 煤炭学报,2019,44(6):1726−1731.
DAI Shuhong,WANG Xiaochen,PAN Yishan,et al. Experimental study on the evaluation of coal burst tendency utilizing modulus index[J]. Journal of China Coal Society,2019,44(6):1726−1731.
|
[35] |
齐庆新,彭永伟,李宏艳,等. 煤岩冲击倾向性研究[J]. 岩石力学与工程学报,2011,30(S1):2736−2742.
QI Qingxin,PENG Yongwei,LI Hongyan,et al. Study of bursting liability of coal and rock[J]. Chinese Journal of Rock Mechanics & Engineering,2011,30(S1):2736−2742.
|
[36] |
彭 俊,蔡 明,荣 冠,等. 裂纹闭合应力及其岩石微裂纹损伤评价[J]. 岩石力学与工程学报,2015,34(6):1091−1100.
PENG Jun,CAI Ming,RONG Guan,et al. Stresses for crack closure and its application to assessing stress-induced microcrack damage[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(6):1091−1100.
|
[37] |
KULATILAKE P H S W, MALAMA Bwalya, WANG Jialai. Physical and particle flow modeling of jointed rock block behavior under uniaxial loading[J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38(5): 641−657.
|
[38] |
DEISMAN N, IVARS D M, PIERCE M. PFC2D Smooth joint contact model numerical experiments[C]// Edmonton, Canda: GeoEdmonton’08 Drganizing Committee, 2008.
|
[39] |
BAHAADDINI M,HAGAN P C,MITRA R,et al. Parametric Study of Smooth Joint Parameters on the Shear Behaviour of Rock Joints[J]. Rock Mechanics and Rock Engineering,2015,48(3):923−940.
|
[40] |
李文洲,司林坡,卢志国,等. 煤单轴压缩起裂强度确定及其关键因素影响分析[J]. 煤炭学报,2021,46(S2):670−680.
LI Wenzhou,SI Linpo,LU Zhiguo,et al. Determination of coal cracking initiation strength under uniaxial compression and analysis of its key factors[J]. Journal of China Coal Society,2021,46(S2):670−680.
|
[41] |
刘新荣,邓志云,刘永权,等. 岩石节理峰前循环直剪试验颗粒流宏细观分析[J]. 煤炭学报,2019,44(7):2103−2115.
LIU Xinrong,DENG Zhiyun,LIU Yongquan,et al. Macroscopic and microscopic analysis of particle flow in pre-peak cyclic direct shear test of rock joint[J]. Journal of China Coal Society,2019,44(7):2103−2115.
|