Advance Search
XU Lianhang,GAO Jie,YE Zhuang,et al. On line monitoring system of face scraper based on image processing and magnetic flaw detection technology[J]. Coal Science and Technology,2023,51(S1):390−395. DOI: 10.13199/j.cnki.cst.2022-2173
Citation: XU Lianhang,GAO Jie,YE Zhuang,et al. On line monitoring system of face scraper based on image processing and magnetic flaw detection technology[J]. Coal Science and Technology,2023,51(S1):390−395. DOI: 10.13199/j.cnki.cst.2022-2173

On line monitoring system of face scraper based on image processing and magnetic flaw detection technology

Funds: 

Shendong Baude "Top Coal Intelligent Control Technology Research" project (00000050048)

More Information
  • Received Date: October 19, 2022
  • Accepted Date: November 08, 2022
  • Available Online: August 15, 2023
  • In order to monitor the working state of the face scraper in real time in production practice, avoid the loss caused by chain deviation, wear and breakage, and improve the intelligence and automation level of the mining process, this paper proposes an online monitoring system for the face scraper based on image processing technologies such as semantic segmentation and edge detection and magnetic flaw detection sensor technology. The results show that, on the premise of meeting the recognition conditions, the recognition rate of the scraper chain can reach 90%, the recognition delay is less than 2 seconds, and the system can have high detection accuracy when the chain of the scraper is stretched, worn or deformed more than 5%. In addition, the ground dispatching command center can receive the video, pictures and voice alarm information of the ground monitoring system of the broken chain and inclined chain of the scraper conveyor in real time.

  • [1]
    王学文,谢嘉成,郝尚清,等. 智能化综采工作面实时虚拟监测方法与关键技术[J]. 煤炭学报,2020,45(6):1984−1996.

    WANG Xuewen,XIE Jiacheng,HAO Shangqing,et al. Real-time virtual monitoring method and key technology of intelligent fully mechanized mining face[J]. Journal of Coal Science,2020,45(6):1984−1996.
    [2]
    王龙康. 煤矿安全隐患层次分析与预警方法研究[D]. 北京: 中国矿业大学(北京), 2015.

    WANG Longkang. Hierarchy analysis and early warning method research of hidden dangers in coal mines[D]. Beijing: China University of Mining and Technology (Beijing), 2015.
    [3]
    杨士伟. 矿井刮板输送机传输链条断链故障监测系统设计研究[J]. 机械管理开发,2021,36(5):110−112.

    YANG Shiwei. Design and research of monitoring system for broken chain of transmission chain of mine scraper conveyor[J]. Mechanical Management and Development,2021,36(5):110−112.
    [4]
    陈令国,赵江华,梅雪峰. 综采工作面刮板输送机的自动化、智能化控制技术[J]. 工矿自动化,2011,37(12):24−26.

    CHEN Lingguo,ZHAO Jianghua,MEI Xuefeng. Automation and intelligent control technology of scraper conveyor in fully mechanized mining face[J]. Automation of Industry and Mine,2011,37(12):24−26.
    [5]
    何张雷. 在线监测系统在刮板输送机故障诊断中的应用[J]. 矿业装备,2018(6):108−109. doi: 10.3969/j.issn.2095-1418.2018.06.052

    HE Zhanglei. Application of online monitoring system in fault diagnosis of scraper conveyor[J]. Mining Equipment,2018(6):108−109. doi: 10.3969/j.issn.2095-1418.2018.06.052
    [6]
    阙建立. 智能矿山平台建设与实现[J]. 工矿自动化,2018,44(4):90−94.

    QUE Jianjian. Construction and realization of intelligent mine platform[J]. Industrial and Mine Automation,2018,44(4):90−94.
    [7]
    孙其博,刘 杰,黎 羴,等. 物联网: 概念、架构与关键技术研究综述[J]. 北京邮电大学学报,2010,33(3):1−9. doi: 10.3969/j.issn.1007-5321.2010.03.001

    SUN Qibo,LIU Jie,LI Rong,et al. Internet of things: concept, framework and key technology research review[J]. Journal of Beijing University of Posts and Telecommunications,2010,33(3):1−9. doi: 10.3969/j.issn.1007-5321.2010.03.001
    [8]
    汤伟建. 基于卷积神经网络的图像语义分割方法研究[D]. 淮南: 安徽理工大学, 2022.

    TANG Weijian. Research on image semantic segmentation method based on convolutional neural network[D]. Huainan: Anhui University of Science and Technology, 2022.
    [9]
    周飞燕,金林鹏,董 军. 卷积神经网络研究综述[J]. 计算机学报,2017,40(6):1229−1251. doi: 10.11897/SP.J.1016.2017.01229

    ZHOU Feiyan,JIN Linpeng,DONG Jun. Review of convolutional neural network research[J]. Journal of Computers,2017,40(6):1229−1251. doi: 10.11897/SP.J.1016.2017.01229
    [10]
    林俊明. 漏磁检测技术及发展现状研究[J]. 无损探伤,2006(1):1−5,11. doi: 10.3969/j.issn.1671-4423.2006.01.001

    LIN Junming. Research on flux leakage detection technology and development status[J]. Nondestructive Testing,2006(1):1−5,11. doi: 10.3969/j.issn.1671-4423.2006.01.001
    [11]
    周俊莹. 基于磁探伤原理的矿用钢丝绳局部缺陷检测方法研究[D]. 北京: 中国矿业大学(北京), 2019.

    ZHOU Junying. Research on local defect detection method of mining steel wire rope based on magnetic flaw detection principle[D]. Beijing: China University of Mining and Technology (Beijing), 2019.
    [12]
    赵国锋,陈 婧,韩远兵,等. 5G移动通信网络关键技术综述[J]. 重庆邮电大学学报(自然科学版),2015,27(4):441−452.

    ZHAO Guofeng,CHEN Jing,HAN Yuanbing,et al. Summary of key technologies of 5G mobile communication network[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition),2015,27(4):441−452.
    [13]
    王彦博. 物联网形势下的5G通信技术运用分析[J]. 中国新通信,2022,24(19):4−6.

    WANG Yanbo. Analysis of the application of 5g communication technology under the situation of the internet of things[J]. China New Communications,2022,24(19):4−6.
    [14]
    张华兵. 基于MapX的矿山安全管理信息系统的设计与开发[D]. 北京: 中国地质大学(北京), 2006.

    ZHANG Huabing. Design and development of mine safety management information system based on MapX[D]. Beijing: China University of Geosciences (Beijing), 2006.

Catalog

    Article views (180) PDF downloads (53) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return