LI Mei,MAO Shanjun,ZHAO Mingjun. Research progress and prospects of coal mine intelligent geological guarantee systems[J]. Coal Science and Technology,2023,51(2):334−348
. DOI: 10.13199/j.cnki.cst.2022-2125Citation: |
LI Mei,MAO Shanjun,ZHAO Mingjun. Research progress and prospects of coal mine intelligent geological guarantee systems[J]. Coal Science and Technology,2023,51(2):334−348 . DOI: 10.13199/j.cnki.cst.2022-2125 |
The intelligent geological guarantee system is an important part of coal mines IT construction. The article first reviews the history of geological information technology at home and abroad from the respect of geological exploration equipment, geological modelling software, geological data manipulation, intelligent working face equipment, summarizes the technology progress of geological guarantee system including hidden geohazards exploration, geological and surveying data acquisition and disaster monitoring, multi-source geological data fusion and big data analytics, GIS One Map cloud service, transparent geological 3D modeling and visualization, and geological guarantee intelligent analytics, explains the current problems during the coal mine intelligent geological guarantee systems IT construction, those are: dynamic geological survey data acquisition technologies such as coal and rock stratum recognition, intelligent seismic interpretation and 3D reconstruction of point clouds have not yet made breakthroughs. The data format of various geological software is not compatible and unified, and the ability of multi-source data sharing and fusion processing needs to be improved. Further research is needed to carry out geological forecasting and prevention and control of geological hidden dangers based on big data and artificial intelligence technology. Finally, the trends of the coal mine geological guarantee system are discussed, which are higher precision geophysical equipment and AI interpretation; multi-scale 3D dynamic geological model; analysis and prediction of potential geohazards; geological model-based dynamic planning for intelligent production. Our research provides a useful reference for the IT construction of mine intelligent geological guarantee system and mining application.
[1] |
GOODCHILD M F,GUO H,ANNONI A,et al. Next-generation Digital Earth[J]. Proceedings of the National Academy of Sciences of the USA,2012,109(28):11088−11094.
|
[2] |
CRAGLIA M,de BIE K,JACKSON D,et al. Digital Earth 2020: towards the vision for the next decade[J]. International Journal of Digital Earth,2012,5(1):4−21. doi: 10.1080/17538947.2011.638500
|
[3] |
GUO H,LIU Z,JIANG H,et al. Big Earth Data: a new challenge and opportunity for Digital Earth’s development[J]. International Journal of Digital Earth,2017,10(1):1−12. doi: 10.1080/17538947.2016.1264490
|
[4] |
李德仁. 展望大数据时代的地球空间信息学[J]. 测绘学报,2016,45(4):379−384. doi: 10.11947/j.AGCS.2016.20160057
LI Deren. Towards geo-spatial information science in big data era[J]. Acta Geodaetica et Cartographica Sinica,2016,45(4):379−384. doi: 10.11947/j.AGCS.2016.20160057
|
[5] |
吴冲龙,刘 刚. “玻璃地球”建设的现状、问题、趋势与对策[J]. 地质通报,2015,34(7):1280−1287. doi: 10.3969/j.issn.1671-2552.2015.07.005
WU Chonglong,LIU Gang. Current situation, existent problems, trend and strategy of the construction of “Glass Earth”[J]. Geological Bulletin of China,2015,34(7):1280−1287. doi: 10.3969/j.issn.1671-2552.2015.07.005
|
[6] |
刘树臣. 发展新一代矿产勘探技术: 澳大利亚玻璃地球计划的启示[J]. 地质与勘探, 2003(5): 53–56.
LIU Shuchen: Towards the next generation of giant minerals exploration techniques: some considerations about the glass earth[J]. Geology and Exploration, 2003(5): 53–56.
|
[7] |
赵 平. 构建新时代“透明地球、数字地球、美丽地球”的地勘战略愿景[J]. 中国煤炭地质,2019,31(9):1−7, 36.
ZHAO Ping. Aspiration to structure a “transparent earth, digital earth and beautiful earth” geological exploration strategy in new era[J]. Coal Geology of China,2019,31(9):1−7, 36.
|
[8] |
刘福胜,马彦良,李 华. 关于煤炭地质单位“透明地球”建设的若干思考[J]. 中国煤炭地质,2019,31(11):26−30. doi: 10.3969/j.issn.1674-1803.2019.11.06
LIU Fusheng,MA Yanliang,LI Hua. Pondering on some issues in coal geological exploration unit “transparent earth” construction[J]. Coal Geology of China,2019,31(11):26−30. doi: 10.3969/j.issn.1674-1803.2019.11.06
|
[9] |
彭苏萍. 建立与完善我国煤矿高产高效矿井地质保障系统的几个问题[C]// 中国科协“煤炭青年学者论坛”报告会, 中国煤炭学会, 1998.
PENG Suping. Several problems in establishing and improving the geological guarantee system of high-yield and high-efficiency mines in China’s coal mines [C]// China Association for Science and Technology “Coal Young Scholars Forum” report meeting, China Coal Society. 1998.
|
[10] |
李恒堂,雷宝林,杨光明. 我国煤矿地质保障系统技术发展现状和前景[J]. 煤田地质与勘探,2005(z1):9−13.
LI Hengtang,LEI Baolin,YANG Guangming. Development progress and prospect of China Mine Geological Safety Guarantee System[J]. Coal Geology& Exploration,2005(z1):9−13.
|
[11] |
毛善君. 灰色地理信息系统: 动态修正地质空间数据的理论和技术[J]. 北京大学学报:自然科学版,2002,38(4):556−562.
MAO Shanjun. Gray geographical information system—the theory and technology of correct geological spatial data dynamically[J]. Acta Scientiarum Naturalium Universitatis Pekinensis,2002,38(4):556−562.
|
[12] |
毛善君. “高科技煤矿”信息化建设的战略思考及关键技术[J]. 煤炭学报,2014,39(8):1572−1583.
MAO Shanjun. Theory and method of Gray Geographic Information System[J]. Journal of China Coal Society,2014,39(8):1572−1583.
|
[13] |
毛善君,李 梅. 灰色地理信息系统的理论及应用[J]. 同煤科技,2017(5):1−5.
MAO Shanjun,LI Mei. Theory and application of gray geographic information system[J]. Datong Coal Science & Technology,2017(5):1−5.
|
[14] |
孙振明,毛善君,祁和刚,等. 煤矿三维地质模型动态修正关键技术[J]. 煤炭学报,2014,39(5):918−924.
SUN Zhenming,MAO Shanjun,QI Hegang,et al. Dynamic correction of coal mine three-dimensional geological model[J]. Journal of China Coal Society,2014,39(5):918−924.
|
[15] |
祁和刚, 毛善君, 王昌傲, 等. 煤矿高精度三维动态地质模型的研究与应用[M]. 北京: 科学出版社, 2016.
QI Hegang, MAO Shanjun, WANG Aochang, et al. Research and application of high precision 3D dynamic geological model in coal mine[M]. Beijing: Science Press, 2016.
|
[16] |
毛善君,崔建军,令狐建设,等. 透明化矿山管控平台的设计与关键技术[J]. 煤炭学报,2018,43(12):3539−3548.
MAO Shanjun,CUI Jianjun,LINGHU Jianshe,et al. System design and key technology of transparent mine management and control platform[J]. Journal of China Coal Society,2018,43(12):3539−3548.
|
[17] |
毛善君,鲁守明,李存禄,等. 基于精确大地坐标的煤矿透明化智能综采工作面自适应割煤关键技术研究及系统应用[J]. 煤炭学报,2022,47(1):515−526.
MAO Shanjun,LU Shouming,LI Cunlu,et al. Key technologies and system of adaptive coal cutting in transparent intelligent fully mechanized coal mining face based on precise geodetic coordinates[J]. Journal of China Coal Society,2022,47(1):515−526.
|
[18] |
王国法. 分类分级推进智能化矿山建设: 祝贺《智能矿山》创刊[J]. 智能矿山,2020,1(1):4−20.
WANG Guofa. Promote development of intelligent mines by classification for the issue of intelligent mines[J]. Journal of Intelligent Mine,2020,1(1):4−20.
|
[19] |
彭苏萍. 我国煤矿安全高效开采地质保障系统研究现状及展望[J]. 煤炭学报,2020,45(7):2331−2345. doi: 10.13225/j.cnki.jccs.DZ20.1089
PENG Suping. Current status and prospects of research on geological assurance system for coal mine safe and high efficient mining[J]. Journal of China Coal Society,2020,45(7):2331−2345. doi: 10.13225/j.cnki.jccs.DZ20.1089
|
[20] |
程建远,朱梦博,王云宏,等. 煤炭智能精准开采工作面地质模型梯级构建及其关键技术[J]. 煤炭学报,2019,44(8):2285−2295.
CHENG Jianyuan,ZHU Mengbo,WANG Yunhong,et al. Cascade construction of geological model of longwall panel for intelligent precision coal mining and its key technology[J]. Journal of China Coal Society,2019,44(8):2285−2295.
|
[21] |
王家臣,PENG Syd S,李 杨. 美国煤炭地下开采与自动化技术进展[J]. 煤炭学报,2021,46(1):36−45. doi: 10.13225/j.cnki.jccs.2020.1641
WANG Jiachen,PENG Syd S,LI Yang. State-of-the-art in underground coal mining and automation technology in the United States[J]. Journal of China Coal Society,2021,46(1):36−45. doi: 10.13225/j.cnki.jccs.2020.1641
|
[22] |
GOCHIOCO Lawrence M. Seismic surveys for coal exploration and mine planning[J]. The Leading Edge,1990,9:25. doi: 10.1190/1.1439738
|
[23] |
WIBOWO R C, SARKOWI M, MULYATNO B S, et al. Thinned coal distribution modeling based on integrated geological and geophysical data: Case study CBM resources in Central Palembang Sub-Basin[C]//AIP Conference Proceedings, 2020, 2245(1): 070011.
|
[24] |
许亚峰,花卫华,李 毅. 基于GeoSciML的地学数据互操作服务研究[J]. 地质学刊,2020,44(4):337−344.
XU Yafeng,HUA Weihua,LI Yi. Study on geoscience data interoperability service based on GeoSciML[J]. Journal of Geology,2020,44(4):337−344.
|
[25] |
WRONA T,INDRANIL P. Seismic facies analysis using machine learning[J]. Geophysics,2018,83(5):1−34. doi: 10.1190/geo2018-0815-tiogeo.1
|
[26] |
赵 勇. 基于CNN的探地雷达数据反演与道路病害自动识别[D]. 长春: 吉林大学, 2022.
ZHAO Yong. Research on inversion of ground penetrating radar data and automatic detection of road diseases based on CNN [D]. Changchun: Jilin University, 2022.
|
[27] |
LINDSAY M D, AILLÈRES L, JESSELL M W, et al. Locating and quantifying geological uncertainty in three dimensional models: Analysis of the Gippsland Basin, southeastern Australia[J]. Tectonophysics, 2012, 546–547: 10–27.
|
[28] |
WELLMANN F, CAUMON G. Chapter One - 3D Structural geological models: Concepts, methods, and uncertainties[M]. Schmelzbach C. Advances in Geophysics. Elsevier, 2018: 1–121.
|
[29] |
李 森. 基于惯性导航的工作面直线度测控与定位技术[J]. 煤炭科学技术,2019,47(8):169−174.
LI Sen. Measurement & control and localisation for fully-mechanized working face alignment based on inertial navigation[J]. Coal Science and Technology,2019,47(8):169−174.
|
[30] |
RALSTON JC, REID DC, DUNN MT, et al. Longwall automation: delivering enabling technology to achieve safer and more productive underground mining[J]. International Journal of Mining Science and Technology 2015, 25(6): 865–876.
|
[31] |
PENG S S,DU F,CHENG J,et al. Automation in US longwall coal mining: A state-of-the-art review[J]. International Journal of Mining Science and Technology,2019,29(2):151−159. doi: 10.1016/j.ijmst.2019.01.005
|
[32] |
RALSTON C Jonathon,HARGRAVE Chad O,DUNN T Mark. Longwall automation: trends, challenges and opportunities[J]. International Journal of Mining Science and Technology,2017,27(5):733−739.
|
[33] |
DUNN Mark,REID Peter,MALOS John. Development of a protective enclosure for remote sensing applications—case study: laser scanning in underground coal mines[J]. Resources,2020,9(5):1−10.
|
[34] |
彭苏萍. 煤矿安全高效开采地质保障系统[C]//煤矿安全高效开采地质保障体系. 北京: 煤炭工业出版社, 2001.
PENG Suping. Geological assurance system for coal mine safe and high efficient mining[C]// Geological assurance system for coal mine safe and high efficient mining. Beijing: Coal Industry Press, 2001.
|
[35] |
韩德馨, 彭苏萍. 我国煤矿高产高效矿井地质保障系统研究回顾及发展构想[J]. 中国煤炭, 2002, 28(2): 4–9.
HAN Dexin, PENG Suping. Review and outlook for mine geological assurance system for China’s high-efficiency coal Mines[J]. China Coal, 2002, 28(2): 4–9.
|
[36] |
董书宁. 煤矿安全高效生产地质保障的新技术新装备[J]. 中国煤炭,2020,46(9):15−23. doi: 10.3969/j.issn.1006-530X.2020.09.003
DONG Shuning. New technology and equipment of geological guarantee for safe and efficient production in coal mine[J]. China Coal,2020,46(9):15−23. doi: 10.3969/j.issn.1006-530X.2020.09.003
|
[37] |
董书宁,刘再斌,程建远,等. 煤炭智能开采地质保障技术及展望[J]. 煤田地质与勘探,2021,49(1):21−31. doi: 10.3969/j.issn.1001-1986.2021.01.003
DONG Shuning,LIU Zaibin,CHENG Jianyuan,et al. Technologies and prospect of geological guarantee for intelligent coal mining[J]. Coal Geology & Exploration,2021,49(1):21−31. doi: 10.3969/j.issn.1001-1986.2021.01.003
|
[38] |
程建远,王会林. 煤矿地质保障技术现状与智能探测前景展望[J]. 智能矿山,2020,1(1):35−45.
CHENG Jianyuan,WANG Huilin. Status of coal mine geological guarantee system technology and prospect of Intelligent Detection[J]. Journal of Intelligent Mine,2020,1(1):35−45.
|
[39] |
王 佟,邵龙义,夏玉成,等. 中国煤炭地质研究取得的重大进展与今后的主要研究方向[J]. 中国地质,2017,44(2):242−262.
WANG Tong,SHAO Longyi,XIA Yucheng,et al. Major achievements and future research directions of the coal geology in China[J]. Geology in China,2017,44(2):242−262.
|
[40] |
李 梅,杨帅伟,孙振明,等. 智慧矿山框架与发展前景研究[J]. 煤炭科学技术,2017,45(1):121−128,134. doi: 10.13199/j.cnki.cst.2017.01.021
LI Mei,YANG Shuaiwei,SUN Zhenming,et al. Study on framework and development prospects of intelligent mine[J]. Coal Science and Technology,2017,45(1):121−128,134. doi: 10.13199/j.cnki.cst.2017.01.021
|
[41] |
王双明,段中会,马 丽,等. 西部煤炭绿色开发地质保障技术研究现状与发展趋势[J]. 煤炭科学技术,2019,47(2):1−6.
WANG Shuangming,DUAN Zhonghui,MA Li,et al. Research status and future trends of geological assurance technology for coal green development in Western China[J]. Coal Science and Technology,2019,47(2):1−6.
|
[42] |
武 强. 我国矿井水防控与资源化利用的研究进展、问题和展望[J]. 煤炭学报,2014,39(5):795−805. doi: 10.13225/j.cnki.jccs.2014.0478
WU Qiang. Progress, problems and prospects of prevention and control technology of mine water and reutilization in China[J]. Journal of China Coal Society,2014,39(5):795−805. doi: 10.13225/j.cnki.jccs.2014.0478
|
[43] |
袁 亮. 煤炭精准开采科学构想[J]. 煤炭学报,2017,42(1):1−7. doi: 10.13225/j.cnki.jccs.2016.1661
YUAN Liang. Scientific conception of precise coal mining[J]. Journal of China Coal Society,2017,42(1):1−7. doi: 10.13225/j.cnki.jccs.2016.1661
|
[44] |
袁 亮,张平松. 煤炭精准开采地质保障技术的发展现状及展望[J]. 煤炭学报,2019,44(8):2277−2284.
YUAN Liang,ZHANG Pingsong. Development status and prospect of geological guarantee technology for precise coal mining[J]. Journal of China Coal Society,2019,44(8):2277−2284.
|
[45] |
毛善君, 李 祥, 景 超. 基于地质测量保障系统的矿山智能化管控平台建设方法[P]. 中国: ZL202210511857.4, 2022-08-09.
|
[46] |
毛善君, 张鹏鹏, 李 振, 等. 用于透明化矿山的构建方法[P]. 中国: ZL201711339845.3, 2019-01-04.
|
[47] |
毛善君, 李 振, 张鹏鹏, 等. 一种回采工作面煤层透明化三维地质模型构建方法及装置[P]. 中国: ZL2020102520364, 2021-07-20.
|
[48] |
马新平,刘 伯. 煤矿井下钻探装备和钻探施工技术发展与探索[J]. 煤炭与化工,2021,44(2):55−58. doi: 10.19286/j.cnki.cci.2021.02.014
MA Xinping,LIU Bo. Development and exploration of underground coal mine drilling equipment and drilling construction technology[J]. Coal and Chemical Industry,2021,44(2):55−58. doi: 10.19286/j.cnki.cci.2021.02.014
|
[49] |
程久龙,李 飞,彭苏萍,等. 矿井巷道地球物理方法超前探测研究进展与展望[J]. 煤炭学报,2014,39(8):1742−1750. doi: 10.13225/j.cnki.jccs.2014.9007
CHENG Jiulong,LI Fei,PENG Suping,et al. Research progress and development direction on advanced detection in mine roadway working face using geophysical methods[J]. Journal of China Coal Society,2014,39(8):1742−1750. doi: 10.13225/j.cnki.jccs.2014.9007
|
[50] |
刘盛东,刘 静,岳建华. 中国矿井物探技术发展现状和关键问题[J]. 煤炭学报,2014,39(1):19−25. doi: 10.13225/j.cnki.jccs.2013.0587
LIU Shengdong,LIU Jing,YUE Jianhua. Development status and key problems of Chinese mining geophysical technology[J]. Journal of China Coal Society,2014,39(1):19−25. doi: 10.13225/j.cnki.jccs.2013.0587
|
[51] |
XUE Guoqiang,WEN Chen,CHENG Jiulong,et al. A review of electrical and electromagnetic methods for coal mine exploration in China[J]. IEEE Access,2019,7:177332−177341. doi: 10.1109/ACCESS.2019.2951774
|
[52] |
程建远,李淅龙,张广忠,等. 煤矿井下地震勘探技术应用现状与发展展望[J]. 勘探地球物理进展,2009,32(2):79,96−100,111.
CHENG Jianyuan,LI Xilong,ZHANG Guangzhong,et al. Current status and outlook of seismic exploration applied underground in coal mine[J]. Progress in Exploration Geophysics,2009,32(2):79,96−100,111.
|
[53] |
彭苏萍,杜文凤,赵 伟,等. 煤田三维地震综合解释技术在复杂地质条件下的应用[J]. 岩石力学与工程学报,2008(S1):2760−2765.
PENG Suping,DU Wenfeng,ZHAO Wei,et al. 3D coalfield seismic integrated interpretation technique in complex geological condition[J]. Chinese Journal of Rock Mechanics and Engineering,2008(S1):2760−2765.
|
[54] |
彭苏萍,邹冠贵,李巧灵. 测井约束地震反演在煤厚预测中的应用研究[J]. 中国矿业大学学报,2008(6):729−733.
PENG Suping,ZOU Guangui,LI Qiaoling. Seam thickness prediction methods based on the logging constrained seismic inversion[J]. Journal of China University of Mining & Technology,2008(6):729−733.
|
[55] |
陈柏平,崔 凡,刘 波,等. 基于地质统计学反演的透明化矿山岩性建模参数研究及应用[J]. 矿业科学学报,2022,7(4):427−436. doi: 10.19606/j.cnki.jmst.2022.04.004
CHEN Baiping,CUI Fan,LIU Bo,et al. Research and application of inversion parameters based on geological statistics inversion in transparent mines rock major modeling[J]. Journal of Mining Science and Technology,2022,7(4):427−436. doi: 10.19606/j.cnki.jmst.2022.04.004
|
[56] |
袁 峰,申 涛,谢晓深,等. 基于深度学习的地震多属性融合技术在导水裂隙带探测中的应用[J]. 煤炭学报,2021,46(10):3234−3244. doi: 10.13225/j.cnki.jccs.2020.0902
YUAN Feng,SHEN Tao,XIE Xiaoshen,et al. Application of deep learning-based seismic multi-attribute fusion technology in the detection of water conducting fissure zone[J]. Journal of China Coal Society,2021,46(10):3234−3244. doi: 10.13225/j.cnki.jccs.2020.0902
|
[57] |
左仁广,彭 勇,李 童,等. 基于深度学习的地质找矿大数据挖掘与集成的挑战[J]. 地球科学,2021,46(1):350−358.
ZOU Renguang,PENG Yong,LI Tong,et al. Challenges of geological prospecting big data mining and integration using deep learning algorithms[J]. Earth Science,2021,46(1):350−358.
|
[58] |
GUNDERSON L Kellen,ZHANG Zhao,PAYNE Barton,et al. Machine learning applications to seismic structural interpretation: Philosophy, progress, pitfalls, and potential[J]. AAPG Bulletin,2022,106(11):2187−2202. doi: 10.1306/12162121016
|
[59] |
马庆勋,李贤志,张泽奇. 一种以自然伽玛参数为主的综合煤矿井下测井系统[J]. 煤矿开采,2015,20(2):16−19. doi: 10.13532/j.cnki.cn11-3677/td.2015.02.005
MA Qingxun,LI Xianzhi,ZHANG Zeqi. Comprehensive underground logging system dominated by natural gamma parameters[J]. Coal Mining Technology,2015,20(2):16−19. doi: 10.13532/j.cnki.cn11-3677/td.2015.02.005
|
[60] |
李松营,廉 洁,滕吉文,等. 基于槽波透射法的采煤工作面煤厚解释技术[J]. 煤炭学报,2017,42(3):719−725. doi: 10.13225/j.cnki.jccs.2016.0595
LI Songying,LIAN Jie,TENG Jiwen,et al. Interpretation technology of coal seam thickness in mining face by ISS transmission method[J]. Journal of China Coal Society,2017,42(3):719−725. doi: 10.13225/j.cnki.jccs.2016.0595
|
[61] |
许献磊,杨 峰,夏云海,等. 矿井超深探测地质雷达天线的开发及应用[J]. 煤炭科学技术,2016,44(4):124−129. doi: 10.13199/j.cnki.cst.2016.04.025
XU Xianlei,YANG Feng,XIA Yunhai,et al. Development and application of mine geological radar antenna for mine ultra-deep detection[J]. Coal Science and Technology,2016,44(4):124−129. doi: 10.13199/j.cnki.cst.2016.04.025
|
[62] |
刘四新,曾昭发. 频散介质中地质雷达波传播的数值模拟[J]. 地球物理学报,2007(1):320−326.
LIU Sixin,ZENG Zhaofa. Numerical simulation for Ground Penetrating Radar wave propagation in the dispersive medium[J]. Chinese Journal of Geophysics,2007(1):320−326.
|
[63] |
张平松,李圣林,邱 实,等. 巷道快速智能掘进超前探测技术与发展[J]. 煤炭学报,2021,46(7):2158−2173.
ZHANG Pingsong,LI Shenglin,QIU Shi,et al. Advance detection technology and development of fast intelligent roadway drivage[J]. Journal of China Coal Society,2021,46(7):2158−2173.
|
[64] |
王 季,覃 思,陆 斌,等. 基于掘进机随掘震源的巷道侧前方断层成像技术[J]. 煤炭科学技术,2021,49(2):232−237.
WANG Ji,QIN Si,LU Bin,et al. Tomographic imaging technology of front side of roadway based on excavation source of roadheade[J]. Coal Science and Technology,2021,49(2):232−237.
|
[65] |
刘俊利,赵豪杰,李长有. 基于采煤机滚筒截割振动特性的煤岩识别方法[J]. 煤炭科学技术,2013,41(10):93−95, 116. doi: 10.13199/j.cnki.cst.2013.10.032
LIU Junli,ZHAO Haojie,LI Changyou. Coalp-rock recognition method based on cutting vibration features of coal shearer drums[J]. Coal Science and Technology,2013,41(10):93−95, 116. doi: 10.13199/j.cnki.cst.2013.10.032
|
[66] |
张 强,张润鑫,刘峻铭,等. 煤矿智能化开采煤岩识别技术综述[J]. 煤炭科学技术,2022,50(2):1−26.
ZHANG Qiang,ZHANG Runxin,LIU Junming,et al. Review on coal and rock identification technology for intelligent Mining in coal mines[J]. Coal science and technology,2022,50(2):1−26.
|
[67] |
孙继平. 基于图像识别的煤岩界面识别方法研究[J]. 煤炭科学技术,2011,39(2):77−79.
SUN Jiping. Study on Identified Method of Coal and Rock Interface Based on Image Identification[J]. Coal Science and Technology,2011,39(2):77−79.
|
[68] |
蒋盛锋. 基于三维激光扫描仪的三维点云地图构建研究[D]. 武汉: 华中科技大学, 2016.
JIANG Shengfeng. Research on 3D Point Cloud Map Construction Using 3D Laser Scanner[D]. Wuhan: Huazhong University of Science and Technology, 2016.
|
[69] |
姜龙飞,李宝余,赵晓卡. 基于激光点云的巷道三维重建关键技术研究[J]. 价值工程,2020,39(16):207−210. doi: 10.3969/j.issn.1006-4311.2020.16.090
JIANG Longfei,LI Baoyu,ZHAO Xiaoka. Research on Key Technology of Roadway 3D Reconstruction Based on Laser Point Cloud[J]. Value Engineering,2020,39(16):207−210. doi: 10.3969/j.issn.1006-4311.2020.16.090
|
[70] |
杨健健,张 强,王 超,等. 煤矿掘进机的机器人化研究现状与发展[J]. 煤炭学报,2020,45(8):2995−3005. doi: 10.13225/j.cnki.jccs.2019.1452
YANG Jianjian,ZHANG Qiang,WANG Chao,et al. Status and development of robotization research on roadheader for coal mines[J]. Journal of China Coal Society,2020,45(8):2995−3005. doi: 10.13225/j.cnki.jccs.2019.1452
|
[71] |
程敬义,万志军,PENG Syd S,等. 基于海量矿压监测数据的采场支架与顶板状态智能感知技术[J]. 煤炭学报,2020,45(6):2090−2103.
CHENG Jingyi,WAN Zhijun,PENG Syd S,et al. Technology of intelligent sensing of longwall shield supports status and roof strata based on massive shield pressure monitoring data[J]. Journal of China Coal Society,2020,45(6):2090−2103.
|
[72] |
夏永学,康立军,齐庆新,等. 基于微震监测的5个指标及其在冲击地压预测中的应用[J]. 煤炭学报,2010,35(12):2011−2016. doi: 10.13225/j.cnki.jccs.2010.12.013
XIA Yongxue,KANG Lijun,QI Qingxin,et al. Five indexes of microseismic and their application in rock burst forecastion[J]. Journal of China Coal Society,2010,35(12):2011−2016. doi: 10.13225/j.cnki.jccs.2010.12.013
|
[73] |
吴冲龙,刘 刚,张夏林,等. 地质科学大数据及其利用的若干问题探讨[J]. 科学通报,2016,61(16):1797−1807. doi: 10.1360/N972015-01035
WU Chonglong,LIU Gang,ZHANG Xialin,et al. Discussion on geological science big data and its applications[J]. Chinese Science Bulletin,2016,61(16):1797−1807. doi: 10.1360/N972015-01035
|
[74] |
郭理桥. 新型城镇化与基于“一张图”的“多规融合”信息平台[J]. 城市发展研究,2014,21(3):1−3,13. doi: 10.3969/j.issn.1006-3862.2014.03.020
GUO Liqiao. New patter urbanization and “multiple planning integration” information platform on the base of “one blueprint”[J]. Urban Development Studie,2014,21(3):1−3,13. doi: 10.3969/j.issn.1006-3862.2014.03.020
|
[75] |
毛善君,杨乃时,高彦清,等. 煤矿分布式协同“一张图”系统的设计和关键技术[J]. 煤炭学报,2018,43(1):280−286.
MAO Shanjun,YANG Naishi,GAO Yanqing,et al. Design and key technology research of coal mine distributed cooperative “one map” system[J]. Journal of China Coal Society,2018,43(1):280−286.
|
[76] |
杨兴科,苗霖田,段中会,等. 煤炭地质云(CGC)在线地图服务技术与应用[J]. 中国煤炭地质,2019,31(8):17−21,39.
YANG Xingke,MIAO Lintian,DUAN Zhonghui,et al. Online map service technology and application of Coal Geological Cloud(CGC)[J]. Coal Geology of China,2019,31(8):17−21,39.
|
[77] |
陈建平,李 婧,崔 宁,等. 大数据背景下地质云的构建与应用[J]. 地质通报,2015,34(7):1260−1265.
CHEN Jianping,LI Jing,CUI Ning,et al. The construction and application of geological cloud under the big data background[J]. Geological Bulletin of China,2015,34(7):1260−1265.
|
[78] |
李青元,张洛宜,曹代勇,等. 三维地质建模的用途、现状、问题、趋势与建议[J]. 地质与勘探,2016,52(4):759−767.
LI Qingyuan,ZHANG Luoyi,CAO Daiyong,et al. Usage, status, problems, trends and suggestions of 3D geological modeling[J]. Geology and Exploration,2016,52(4):759−767.
|
[79] |
郭甲腾,代欣位,刘善军,等. 一种三维地质体模型的隐式剖切方法[J]. 武汉大学学报(信息科学版),2015,436(11):219−222.
GUO Jiateng,DAI Xinwei,LIU Shanjun,et al. An implicit cutting method for 3D geological body model[J]. Geomatics and Information Science of Wuhan University,2015,436(11):219−222.
|
[80] |
李 梅,姜 展,姜龙飞,等. 三维可视化技术在智慧矿山领域的研究进展[J]. 煤炭科学技术,2021,49(2):153−162.
LI Mei,JIANG Zhan,JIANG Longfei,et al. Research progress on 3D visualization technology for intelligent mine[J]. Coal Science and Technology,2021,49(2):153−162.
|
[81] |
贾建称, 贾 茜, 桑向阳, 等. 我国煤矿地质保障系统建设30年: 回顾与展望[J]. 煤田地质与勘探, 2023,51(1): 86−106.
JIA Jiancheng, JIA Qian, SANG Xiangyang, et al. Review and prospect: construction of coal mine geological guarantee system in China during past 30 years[J]. Coal Geology & Exploration,2023,51(1): 86−106.
|
[82] |
袁 亮. 我国煤炭主体能源安全高质量发展的理论技术思考. 中国科学院院刊, 2023, 38(1): 11–22.
YUAN L. Theory and technology considerations on high-quality development of coal main energy security in China. Bulletin of Chinese Academy of Sciences, 2023, 38(1): 11–22.
|
1. |
王帅. 基于聚类分析方法的高速公路下下伏小窑采空区稳定性评价. 山西交通科技. 2025(01): 126-130+139 .
![]() |