Advance Search
QIN Botao,JIANG Wenjie,SHI Quanlin,et al. Research progress on fly ash foundation technology to prevent and control spontaneous combustion of coal in mines[J]. Coal Science and Technology,2023,51(1):329−342. DOI: 10.13199/j.cnki.cst.2022-2117
Citation: QIN Botao,JIANG Wenjie,SHI Quanlin,et al. Research progress on fly ash foundation technology to prevent and control spontaneous combustion of coal in mines[J]. Coal Science and Technology,2023,51(1):329−342. DOI: 10.13199/j.cnki.cst.2022-2117

Research progress on fly ash foundation technology to prevent and control spontaneous combustion of coal in mines

Funds: 

National Natural Science Fund for Distinguished Young Scholars (51825402); National Natural Science Foundation of China (52004278); Natural Science Foundation of Jiangsu Province (BK20200658)

More Information
  • Received Date: October 19, 2022
  • Accepted Date: December 29, 2022
  • Available Online: March 08, 2023
  • Coal is the main energy source in China, which is also an important guarantee for the safety and stability of the national power supply as well as economic development. However, the coal combustion process for power generation will produce a large amount of fly ash, and the long-term piling of fly ash solid waste will seriously pollute the soil, water, atmosphere, and ecological environment, on the contrary, the fly ash can be used as a raw material for the prevention and control of coal spontaneous combustion disasters in mines. However, the current application of fly ash in the field of mine fire prevention was certainly limited, such as small amount of scattered utilization, low technical content, low added value, etc. The current scale of harmless pre-treatment and fire prevention and utilization of fly ash is still unable to meet the requirements of the national “carbon peaking and carbon neutrality” target for solid waste resource utilization and green mine construction. For further promote the efficient, high-value, and large-scale utilization of fly ash to realize the rapid development of fly ash-based fire prevention materials and technologies, this paper summarizes the principle, classification, latest development, and application effects of fly ash slurry, fly ash gel, fly ash foam and other fire prevention technologies. Based on the above analysis, this paper condenses three key problems that need to be solved, such as the separation of hazardous substances and valuable components in fly ash solid waste, the precipitation and plugging of pipes during long-distance transportation of highly concentrated fly ash slurry, and the law of seepage and accumulation of fly ash-based fire prevention materials in the goaf. In order to improve the effectiveness of fly ash solid waste in preventing spontaneous combustion of coal and to meet the national requirements for green mines as well as intelligent mine construction under the “carbon neutrality and emission peak” target, this paper proposes the development direction of “Long-lasting for fire prevention-Synergistic carbon sequestration – Intelligent control” for fly ash solid waste in the field of fire prevention technology. Future research will focus on the low-cost and long-lasting fire prevention fly ash solid waste-based materials, integrated fly ash fire prevention technology with mineralized CO2 sequestration and fire prevention, and intelligent fly ash fire prevention material application systems, which will promote the high-value and large-scale reuse of fly ash waste in the field of fire prevention, finally improving the efficiency of preventing and controlling of spontaneous combustion disasters in coal mines, and ensuring the safe and efficient mining.

  • [1]
    LI Quansheng. The view of technological innovation in coal industry under the vision of carbon neutralization[J]. International Journal of Coal Science & Technology,2021,8(6):1197−1207.
    [2]
    方 圆,张万益,曹佳文. 我国能源资源现状与发展趋势[J]. 矿产保护与利用,2018(4):34−42, 47.

    FANG Yuan,ZAHNG Wanyi,CAO Jiawen,et al. Analysis on the current situation and development trend of energy resources in China[J]. Conservation and Utilization of Mineral Resources,2018(4):34−42, 47.
    [3]
    武 强,涂 坤,曾一凡,等. 打造我国主体能源(煤炭)升级版面临的主要问题与对策探讨[J]. 煤炭学报,2019,44(6):1625−1636.

    WU Qiang,TU Shen,ZENG Yifan,et al. Discussion on the main problems and countermeasures for building an upgrade version of main energy (coal) industry in China[J]. Joural of China Coal Society,2019,44(6):1625−1636.
    [4]
    HANNUN R M, RAZZAQ A H A. Air pollution resulted from coal, oil and gas firing in thermal power plants and treatment: a review[C]//IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2022, 1002(1): 012008.
    [5]
    GHAZI F. Electricity development and opportunities to reduce carbon dioxide emissions in Morocco[J]. International Journal of Energy Economics and Policy, 2021.
    [6]
    吴元锋,仪桂云,刘全润,等. 粉煤灰综合利用现状[J]. 洁净煤技术,2013,19(6):100−104. doi: 10.13226/j.issn.1006-6772.2004.03.018

    WU Yuanfeng,YI Guiyun,LIU Quanrun,et al. Current situation of comprehensive utilization of fly ash[J]. Clean Coal Technology,2013,19(6):100−104. doi: 10.13226/j.issn.1006-6772.2004.03.018
    [7]
    WANG J,YANG Z,QIN S,et al. Distribution characteristics and migration patterns of hazardous trace elements in coal combustion products of power plants[J]. Fuel,2019,258:116062,2021.
    [8]
    孙俊民,韩德馨. 粉煤灰的形成和特性及其应用前景[J]. 煤炭转化,1999(1):13−17.

    SUN Junming,HAN Dexin. Forming mechanismsnand properties and properties and utilization[J]. Coal Conversion,1999(1):13−17.
    [9]
    孟宪彬,李明君,丁国光,等. 燃煤电厂粉煤灰综合利用分析[J]. 电力科技与环保,2017,33(4):50−52. doi: 10.3969/j.issn.1674-8069.2017.04.015

    MENG Xianbin,LI Mingjun,DING Guoguang,et al. Analysis of ash and slags comprehensive utilization of coal - fired power plant[J]. Electric Power Technology and Environmental Protection,2017,33(4):50−52. doi: 10.3969/j.issn.1674-8069.2017.04.015
    [10]
    王丽萍,李 超. 粉煤灰资源化技术开发与利用研究进展[J]. 矿产保护与利用,2019,39(4):38−45.

    WANG Lipin,LI Chao. Research progress on the development and utilization of fly ash resource technology[J]. Conservation and Utilization of Mineral Resources,2019,39(4):38−45.
    [11]
    鲁 敏,熊祖鸿,房科靖,等. 粉煤灰基催化材料的研究进展[J]. 环境化学,2019,38(2):297−305.

    LU Ming,XIONG Zuhong,LI Jiqin,et al. Coal fly ash based catalytic materials: A review[J]. Eco-Environmental Knowledge Web,2019,38(2):297−305.
    [12]
    关于加快推动工业资源综合利用的实施方案[J]. 中国信息化, 2022(2): 12-15.

    Implementation plan on accelerating the promotion of comprehensive utilization of industrial resources[J]. China Informatization, 2022(2): 12-15.
    [13]
    吕 晓. 明标定向, 政策推动, 再生资源产业园区化集聚促进低碳发展[J]. 资源再生, 2022(2): 18-21.

    LU Xiao, et al. Explicit standard orientation, policy promotion, industrial park agglomeration of renewable resources to promote low-carbon development [J]. Resource Regeneration, 2022(2): 1 8-21.
    [14]
    SHI Quanlin,QIN Bobtao,HAO Yinhao,et al. Experimental investigation of the flow and extinguishment characteristics of gel-stabilized foam used to control coal fire[J]. Energy,2022,247:123484. doi: 10.1016/j.energy.2022.123484
    [15]
    SWARUP Biswal,SHANTI,AMIT Kumar Gorai. Analyzing the role of in situ coal fire in greenhouse gases emission in a coalfield using remote sensing data and their dispersion and source apportionment study[J]. Environmental Monitoring and Assessment,2022,194(6):1−15.
    [16]
    ONIFADE,MOSHOOD,BEKIR Genc. A review of research on spontaneous combustion of coal[J]. International Journal of Mining Science and Technology,2020,30(3):303−311.
    [17]
    秦波涛,仲晓星,王德明,等. 煤自燃过程特性及防治技术研究进展[J]. 煤炭科学技术,2021,49(1):66−99.

    QIN Botao,ZHONG Xiaoxin,WANG Deming,et al. Research progress of coal spontaneous combustion process characteristics and prevention technology[J]. Coal Science and Technology,2021,49(1):66−99.
    [18]
    邓 军,白祖锦,肖 旸,等. 煤自燃灾害防治技术现状与挑战[J]. 煤矿安全,2020,51(10):118−125. doi: 10.13347/j.cnki.mkaq.2020.10.018

    DENG Jun,BAI Zujin,XIAO Shang,et al. Present situation and challenge of coal spontaneous combustion disasters preventionand control technology[J]. Safe in Coal Mines,2020,51(10):118−125. doi: 10.13347/j.cnki.mkaq.2020.10.018
    [19]
    常纪文,杜根杰,石晓莉,等. 大宗工业固废综合利用, 政策和科技创新要跟上[J]. 环境经济,2021(12):38−41.

    CHANG Jiwen,DU Gengjie,SHI Xiaoli,et al. Comprehensive utilization of bulk industrial solid waste, policy and technological innovation to keep up[J]. Environmental Economics,2021(12):38−41.
    [20]
    马淑杰, 张英健, 罗恩华, 等. 双碳背景下“十四五”大宗固废综合利用建议[J]. 中国投资(中英文), 2021(Z8): 22-25.

    MA Shujie, ZHANG Yinjian, LUO Enhua, et al. Comprehensive utilization of bulk solid waste in the 14th Five-Year Plan in the context of double carbon[J] China Investment, 2021(Z8): 22-25.
    [21]
    VASSILEVA S V,VASSILEVA C G. A new approach for the classification of coal fly ashes based on their origin, composition, properties, and behaviour[J]. Fuel,2007,86(10-11):1490−1512. doi: 10.1016/j.fuel.2006.11.020
    [22]
    SHAHEEN S M,HOODA P S,TSADILAS C D. Opportunities and challenges in the use of coal fly ash for soil improvements–a review[J]. Journal of Environmental Management,2014,145:249−267. doi: 10.1016/j.jenvman.2014.07.005
    [23]
    周小平,魏建成,田少冲,等. 宁东地区粉煤灰中主量元素和稀有元素的成分分析[J]. 中国资源综合利用,2022,40(9):26−28.

    ZHOU Xiaopin,WEI Jiamcheng,TIAN Sshaochong,et al. Composition analysis of major elements and rare elements in fly ash in eastern ningxia area[J]. China Resources Comprehensive Utilization,2022,40(9):26−28.
    [24]
    黄 谦. 国内外粉煤灰综合利用现状及发展前景分析[J]. 中国井矿盐,2011,42(4):41−43. doi: 10.3969/j.issn.1001-0335.2011.04.015

    HUANG Qian,et al. Analysis of development prospects and status quo of comprehensive utilization of fly ash at home and abroad[J]. China Well and Rock Salt,2011,42(4):41−43. doi: 10.3969/j.issn.1001-0335.2011.04.015
    [25]
    庆承松,任升莲,宋传中. 电厂粉煤灰的特征及其综合利用[J]. 合肥工业大学学报(自然科学版),2003(04):529−533.

    QIN Chensong,REN Shenglian,SONG Chuanzhong. Features and utilization of fly ash in power station[J]. Journal of Hefei University of Technoogy,2003(04):529−533.
    [26]
    夏立全,陈贵锋,李文博. 粉煤灰掺杂MnO2催化处理高盐废水中的化学需氧量研究[J]. 煤炭科学技术,2021,49(7):208−215.

    XIA Liquan,CHEN Guifeng,LI Wenbo. Catalytic ozonation of COD in high-salt coal chemical wastewater by fly ash doped with MnO2[J]. Coal Science and Technology,2021,49(7):208−215.
    [27]
    AKIN,DURATE Magalhaes,FEYZA Kazanc. A study on the effects of various combustion parameters on the mineral composition of Tunçbilek fly ash[J]. Fuel,2020,275:117881.
    [28]
    WANG Nannan,SUN Xiyu,ZHAO Qiang,et al. Leachability and adverse effects of coal fly ash: A review[J]. Journal of hazardous materials,2020,396:122725. doi: 10.1016/j.jhazmat.2020.122725
    [29]
    SIRIRUANG C,TOOCHINDA P,JULNIPITAWONG P,et al. CO2 capture using fly ash from coal fired power plant and applications of CO2-captured fly ash as a mineral admixture for concrete[J]. Journal of Environmental Management,2016,170:70−78.
    [30]
    MATSUMOTO S,OGATA S,SHIMADA H,et al. Application of coal ash to postmine land for prevention of soil erosion in coal mine in Indonesia: utilization of fly ash and bottom ash[J]. Advances in Materials Science and Engineering,2016:2016.
    [31]
    MA Lingyun,ZHANG Yulong,WANG Jie,et al. Fire-Prevention Characteristics of an Active Colloid Prepared from Stimulated Fly Ash Component[J]. ACS omega,2022,7(2):1639−1647. doi: 10.1021/acsomega.1c03299
    [32]
    CAVUSOGLU I,YILMAZ E,YILMAZ A O. Sodium silicate effect on setting properties, strength behavior and microstructure of cemented coal fly ash backfill[J]. Powder Technology,2021,384:17−28. doi: 10.1016/j.powtec.2021.02.013
    [33]
    LUO Yang,WU Yinghong,MA Shuhua,et al. Utilization of coal fly ash in China: a mini-review on challenges and future directions[J]. Environmental Science and Pollution Research,2021,28(15):18727−18740. doi: 10.1007/s11356-020-08864-4
    [34]
    何光耀,王 兵,史鹏程,等. 粉煤灰基沸石分子筛的合成及应用进展[J]. 洁净煤技术,2021,27(3):48−60.

    HE Guangyao,WANG Bing,SHI Pengcheng,et al. Progress in the synthesis and application of fly ash-based zeolite molecular sieves[J]. Clean Coal Technology,2021,27(3):48−60.
    [35]
    黄兆龙,湛渊源. 粉煤灰的物理和化学性质[J]. 粉煤灰综合利用,2003(4):3−8. doi: 10.3969/j.issn.1005-8249.2003.04.001

    HUANG Zhaolong,SHENG Yuanyuan. Physical and chemical properties of fly ash[J]. Fly Ash Comprehensive Utilization,2003(4):3−8. doi: 10.3969/j.issn.1005-8249.2003.04.001
    [36]
    GAFFNEY J S,MARLEY N A. The impacts of combustion emissions on air quality and climate–From coal to biofuels and beyond[J]. Atmospheric Environment,2009,43(1):23−36. doi: 10.1016/j.atmosenv.2008.09.016
    [37]
    BINAL A,BAS B,KARAMUT O R. Improvement of the strength of Ankara clay with self-cementing high alkaline fly ash[J]. Procedia engineering,2016,161:374−379. doi: 10.1016/j.proeng.2016.08.577
    [38]
    RAMME B W, THARANIYIL M P. Coal combustion products utilization handbook[J]. 2004.
    [39]
    KOLBE J L, LEE L S, JAFVERT C T, et al. Use of alkaline coal ash for reclamation of a former strip mine[C]//World of Coal Ash (WOCA) Conference, USA. 2011: 1-15.
    [40]
    邵启胤. 粉煤灰用于煤矿井下注浆灭火试验[J]. 煤矿安全技术,1983(4):1−14.

    SHAO Qiyin. Fly ash for underground coal mine grouting fire fighting test[J]. Mining Safety and Environmental Protection,1983(4):1−14.
    [41]
    姜希印. 济宁二号煤矿稠化粉煤灰防灭火技术研究[D]. 西安: 西安科技大学, 2006.

    JIANG Xiyin, Study on technology of fire extinguishing and preventing with the denseness fly ash in JiNing NO·2 coal mine[D]. Xi’an: Xi’an University of science and Technology, 2006.
    [42]
    何 毅. 矿井粉煤灰浆液固化充填技术研究[D]. 西安: 西安科技大学, 2014.

    HE Yi. Research on fly ash slurry seriflux solidify filling technique in coal mine[D]. Xi’an: Xi’an University of Science and Technology, 2014.
    [43]
    李 波. 粉煤灰无机固化充填材料性能研究[D]. 西安: 西安科技大学, 2015.

    LI Bo. Inorganic solidified fly ash filling material performance research[D]. Xi’an: Xi’an University of Science and Technology, 2015.
    [44]
    刘 鑫,肖 旸,邓 军,等. 粉煤灰灌浆防灭火材料性能研究与应用[J]. 煤炭工程,2011(5):119−121. doi: 10.3969/j.issn.1671-0959.2011.05.045

    LIU Xin,XIAO Shang,DENG Jun,et al. Research and application on fire prevention and control performances of fly ash grouting[J]. Coal Engineering,2011(5):119−121. doi: 10.3969/j.issn.1671-0959.2011.05.045
    [45]
    邓 军,刘 磊,任晓东,等. 粉煤灰动压灌浆防灭火技术[J]. 煤矿安全,2013,44(8):64−66, 72.

    DENG Jun,LIU Lei,REN Xiaodong,et al. The technology of fire preventing and extinguishing of fly ash dynamic pressure grouting[J]. Safe in Coal Mines,2013,44(8):64−66, 72.
    [46]
    金永飞,赵大龙,岳宁芳,等. 矿用新型无机固化膨胀充填材料特性试验研究[J]. 煤炭技术,2014,33(7):255−257.

    JIN Yongfei,ZAHO Dalong,YUE Ningfang,et al. Research on property experiment of new type inorganic curing inflation filling material in mine[J]. Coal Technology,2014,33(7):255−257.
    [47]
    黄白泉,黄翰文,陈尚华,等. 凝胶防灭火技术在刘家桥煤矿的应用[J]. 煤矿安全,1993(5):9−10, 16.

    HUANG Baiquan,HUANG Hanwen,CHENG Shanghau,et al. Application of gel fire prevention technology in Liujiaqiao coal mine[J]. Safe in Coal Mines,1993(5):9−10, 16.
    [48]
    徐精彩,邓 军. 凝胶防灭火技术在南屯矿综放面的应用[J]. 焦作矿业学院学报,1995(4):43−48.

    XU Jincai,DENG Jun. The technlque of fire fighting with gel applied in NanTun coal mine[J]. Journal of Henan Polytechnic University(Natural Science),1995(4):43−48.
    [49]
    鲍庆国,解本旭. 凝胶防灭火技术在柴里煤矿的应用[J]. 煤炭科学技术,1995(12):19−21.

    BAO Qinguo,JIE Benxu. Application of gel fire prevention technology in Chaili coal mine[J]. Coal Science and Technology,1995(12):19−21.
    [50]
    徐精彩,文 虎,邓 军,等. 凝胶防灭火技术在煤层内因火灾防治中的应用[J]. 中国煤炭,1997(5):28−30, 59.

    XU Jincai,WEN Hu,DENG Jun,et al. Application of gel fire prevention and suppression technology in the control of endogenous fires in coal seams[J]. China Coal,1997(5):28−30, 59.
    [51]
    吴吉南, 冯学武, 曹大成. 综放面开放采空区无氨胶体泥浆防灭火的机理与应用[J]. 安全, 2000(5): 28-31.

    WU Jinan, FENG Xuewu, CAO Dacheng, Mechanism and application of ammonia-free colloidal slurry for fire prevention in open mining areas at header faces[J]. Safety and Security, 2000(5): 28-31.
    [52]
    张培友,刘祥来. 凝胶在防灭火中的应用[J]. 煤矿安全,2002(12):16−17. doi: 10.3969/j.issn.1003-496X.2002.12.006

    ZHANG Peiyou,LIU Xianglai. Application of gels in fire prevention[J]. Safety in Coal Mines,2002(12):16−17. doi: 10.3969/j.issn.1003-496X.2002.12.006
    [53]
    刘 杰,窦国兰,赵云锋,等. 矿用复合防灭火凝胶的制备与特性研究[J]. 煤矿安全,2022,53(9):177−185. doi: 10.13347/j.cnki.mkaq.2022.09.025

    LIU Jie,DOU Guolan,ZHAO Yunfeng,et al. Study on preparation and properties of composite fire prevention gel for mine[J]. Safety in Coal Mines,2022,53(9):177−185. doi: 10.13347/j.cnki.mkaq.2022.09.025
    [54]
    索 航. 新型煤层巷道充填胶体防灭火材料研究与应用[D]. 廊坊: 华北科技学院, 2016.

    SUO Hang. Research and application of new filling gel on fire prevention and extinguishment at the coal drift[D]. Langfang: North China Institute of Science and Technology, 2016.
    [55]
    张振乾. 矿用防灭火活化粉煤灰胶体的制备及特性研究[D]. 太原: 太原理工大学, 2020.

    ZHANG Zhenqian. Study on preparation and characterization of mine fire activated fly ash colloid[D] Taiyuan: Taiyuan University of Technology, 2020.
    [56]
    王 楠. 煤自然发火胶体防灭火材料性能实验研究[D]. 西安: 西安科技大学, 2011

    WANG Nan. Experimental research on the properties of gel for extinguishing and preventing coal seam spontaneous combustion[D]. Xi’an: Xi’an University of Science and Technology, 2011.
    [57]
    文 虎,徐精彩,邓 军,等. 煤层自燃多功能灌浆注胶防灭火系统及其应用[J]. 煤炭工程,2004(5):4−6.

    WEN Hu,XU Jingcai,DENG Jun,et al. Multifunctional grouting and gluing fire prevention system for spontaneous combustion of coal seams and its application[J]. Coal Engineering,2004(5):4−6.
    [58]
    杨 平,梁国栋,于贵生,等. 粉煤灰胶体隔离控制技术在花山矿复杂火区中的应用[J]. 煤矿安全,2020,51(8):82−86.

    YANG Pin,LIANG Guodong,YU Guisheng,et al. Application of fly ash colloid isolation control technology in complex fire area of huashan mine[J]. Safety in Coal Mines,2020,51(8):82−86.
    [59]
    刘继勇,张辛亥,徐精彩,等. 阳泉矿区胶体防灭火技术实践及发展[J]. 矿业安全与环保,2004(5):39−41+75. doi: 10.3969/j.issn.1008-4495.2004.05.015

    LIU Jiyong,ZHANG Xinhai,XU Jincai,et al. Research on coal bed gas emission and emission intensity in Working faces[J]. Mining Safety and Environmental Protection,2004(5):39−41+75. doi: 10.3969/j.issn.1008-4495.2004.05.015
    [60]
    左希希. 粉煤灰三相泡沫的制备与性能研究[D]. 淮南: 安徽理工大学, 2021.

    ZUO Xixi. Preparation and study on performance of three-phase fly ash foam[D]. Huainan: Anhui University of Science and Technology, 2021.
    [61]
    朱红青,胡 超,周全涛,等. 响应曲面法优化矿井三相泡沫防灭火材料配方研究[J]. 煤炭科学技术,2019,47(4):120−126.

    ZHU Hongqing,HU Chao,ZHOU Quantao,et al. Study on formula of three - phase foam fire prevention and control material optimized by response surface methodology[J]. Coal Science and Technology,2019,47(4):120−126.
    [62]
    WANG Tengfei,FAN Haiming,YANG Weipeng,et al. Stabilization mechanism of fly ash three-phase foam and its sealing capacity on fractured reservoirs[J]. Fuel,2020,264:116832. doi: 10.1016/j.fuel.2019.116832
    [63]
    QIN Botao,Lu Yi,Li Yong,et al. Aqueous three-phase foam supported by fly ash for coal spontaneous combustion prevention and control[J]. Advanced Powder Technology,2014,25(5):1527−1533. doi: 10.1016/j.apt.2014.04.010
    [64]
    靳 磊. 无机固化泡沫防灭火材料及特性研究[D]. 北京: 煤炭科学研究总院, 2020.

    QI Lei. Study on inorganic solidified foam fire-fighting materials and properties[D]. Beijing: China Coal Research Institute, 2020.
    [65]
    张辛亥,李勋广,张国伟,等. 新型矿用无机固化泡沫防灭火材料性能研究[J]. 煤矿安全,2021,52(1):58−63.

    ZHANG Xinhai,et al. Study on properties of a new type of inorganic solidified foam extinguishing material for mine[J]. Safety in Coal Mines,2021,52(1):58−63.
    [66]
    WEN Hu,ZHANG Duo,YU Zhijin,et al. Experimental study and application of inorganic solidified foam filling material for coal mines[J]. Advances in Materials Science and Engineering,2017:2017.
    [67]
    QIN Botao,LU Yi,LI Fanglei,et al. Preparation and stability of inorganic solidified foam for preventing coal fires[J]. Advances in Materials Science and Engineering,2014:2014.
    [68]
    QIN Botao,LU Yi. Experimental research on inorganic solidified foam for sealing air leakage in coal mines[J]. International Journal of Mining Science and Technology,2013,23(1):151−155. doi: 10.1016/j.ijmst.2013.03.006
    [69]
    LU Yi,QIN Botao. Experimental investigation of closed porosity of inorganic solidified foam designed to prevent coal fires[J]. Advances in Materials Science and Engineering,2015:2015.
    [70]
    LU Y,QIN Botao,JIA Yuwei,et al. Thermal insulation and setting property of inorganic solidified foam[J]. Advances in Cement Research,2015,27(6):352−363. doi: 10.1680/adcr.14.00013
    [71]
    LU Yi,QIN Botao. Mechanical properties of inorganic solidified foam for mining rock fracture filling[J]. Materials Express,2015,5(4):291−299. doi: 10.1166/mex.2015.1244
    [72]
    鲁 义. 防治煤炭自燃的无机固化泡沫及特性研究[D]. 北京: 中国矿业大学, 2015.

    LU Yi. Study on the inorganic solidified foam and its characteristics for preventing and controlling spontaneous combustion of coal[D]. Beijing: China University of Mining and Technology, 2015.
    [73]
    ZHOU Fubao,REN Wanxin,WANG Deming,et al. Application of three-phase foam to fight an extraordinarily serious coal mine fire[J]. International Journal of Coal Geology,2006,67(1-2):95−100. doi: 10.1016/j.coal.2005.09.006
  • Related Articles

    [1]HAO Chunming, WANG Yantang, YI Sihai, LIU Shuo. Evolution of microbial carbon sequestration potential in farmland soil driven by natural restoration in coal mine subsidence area[J]. COAL SCIENCE AND TECHNOLOGY, 2025, 53(7): 305-317. DOI: 10.12438/cst.2024-0681
    [2]QIAN Jing, YI Gaofeng, ZHOU Qizhong, TANG Zhigang, PENG Yixuan, WANG Yang, CHEN Shangbin. CO2 storage potential of coal seam in Sanhejian closed coal mine[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(3): 258-268. DOI: 10.12438/cst.2023-0877
    [3]XIA Ao, REN Kexin, ZHANG Jingmiao, HUANG Yun, ZHU Xianqing, ZHU Xun, LIAO Qiang. Promotion of carbon fixation and emission reduction by microalgae with optical fiber/light guide tubes[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(2): 329-337. DOI: 10.12438/cst.2024-0095
    [4]LIU Lang, FANG Zhiyu, WANG Shuangming, GAO Guobin, ZHANG Bo, ZHAO Yujiao, ZHU Mengbo, LIU Zhichao, WANG Jingyu, ZHOU Jing, LI Yan, WANG Mei, ZHANG Xiaoyan, ZHOU Song, JIA Qifeng. Theoretical basis and technical conception of backfill carbon fixation in coal mine[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(2): 292-308. DOI: 10.12438/cst.2023-1485
    [5]CHEN Fu, SONG Xiaojun, DONG Wenxue, ZHU Yanfeng, YOU Yunnan, MA Jing. Effects of land reclamation on soil bacterial community assembly and carbon sequestration function in coal mine subsidence area: taking Dongtan Mining Area as an example[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(1): 345-354. DOI: 10.12438/cst.2023-1221
    [6]YAN Min, YANG Ting, LIN Haifei, YAN Dongjie, LI Yong, HUO Shihao. Experimental study on the influence of surfactant foam properties on the slow release of gas in coal[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(10): 129-139. DOI: 10.13199/j.cnki.cst.2022-1765
    [7]GAO Fei, WANG Peng, SHAN Yafei. Study on the factors affecting the adsorption of CO2 from power plant flus gas in coal left in goaf area[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(9): 140-148. DOI: 10.13199/j.cnki.cst.2022-1037
    [8]CHEN Fu, ZHU Yanfeng, MA Jing, DONG Wenxue, YOU Yunnan, YANG Yongjun. Mechanism, potential and regulation of carbon sequestration and sink enhancement in ecological restoration of mining areas in the Loess Plateau[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(1): 502-513. DOI: 10.13199/j.cnki.cst.2023-2250
    [9]HE Xueqiu, TIAN Xianghui, SONG Dazhao. Progress and expectation of CO2 sequestration safety in coal seams[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(1): 212-219.
    [10]XIA Ao, YE Wenfan, FU Jingwei, HUANG Yun, ZHU Xianqing, FU Qian, LIAO Qiang, ZHU Xun. Current status and prospect of carbon fixation and emission reduction technology for coal-fired flue gas by microalgae[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(1).
  • Cited by

    Periodical cited type(27)

    1. 胡俭, 曹乃夫, 毛小娃, 姚海飞, 王科, 徐明伟. 不同分散剂对粉煤灰浆液输送效果影响实验研究. 能源与节能. 2025(07)
    2. 王胜涛, 唐佳旭, 杨宁, 王青祥, 王石林, 曹旭强, 张新泉, 宋小林, 马驰骋. 粉煤灰直接湿法矿化封存CO_2机制及关键影响因素优化研究. 煤矿安全. 2025(07)
    3. 尹希文, 于秋鸽, 孙晓冬, 甘志超, 崔勇, 岳海荣, 王志会. 超微纳米气泡特性及其对粉煤灰矿化反应强化机制. 煤炭科学技术. 2025(06) 本站查看
    4. 蔡峰,李华琛,封居强. 综放工作面动态注氮参数研究及数值模拟. 华北科技学院学报. 2025(01): 40-47 .
    5. 陈圣贺,郭帅. 茶多酚阻燃微胶囊复合泡沫凝胶防灭火材料制备及性能研究. 煤炭技术. 2025(03): 239-243 .
    6. 乔鼎. 可降解多功能抑尘泡沫在水峪煤矿中的应用效果分析. 山西煤炭. 2025(01): 121-128 .
    7. 李延河,万志军,于振子,苟红,赵万里,周嘉乐,师鹏,甄正,张源. 基于PSO-SVR的掘进工作面风温预测. 煤炭科学技术. 2025(01): 183-191 . 本站查看
    8. 秦波涛,马东. 采空区煤自燃与瓦斯复合灾害防控研究进展及挑战. 煤炭学报. 2025(01): 392-408 .
    9. 史全林,秦波涛,孙永江. 超声处理辅助粉煤灰浸出钙离子矿化CO_2及其产物防灭火特性. 煤炭学报. 2025(02): 1034-1046 .
    10. 董红娟,张振,刘亚琳. 大掺量粉煤灰矸石混凝土配比优化及应用. 煤炭技术. 2025(05): 1-5 .
    11. 宋海洲,孙路路,韦节园,张华声,付伟,张晨. 注氮防灭火对煤体孔裂隙结构影响的实验研究. 煤矿现代化. 2025(04): 43-48 .
    12. 王崇景,杨峰,李可可,刘硕. 复采工作面煤自燃危险区域划分及综合治理技术研究. 煤炭工程. 2024(01): 86-92 .
    13. 王桐,孟祥豹,张延松,刘丽,吴阳,石磊,吴琦岩. 矿用新型水泥-粉煤灰基喷涂堵漏风材料性能研究. 矿业研究与开发. 2024(03): 225-231 .
    14. 李晟立,张雷林. 镁铝水滑石泡沫阻燃剂的制备及阻化特性研究. 煤矿安全. 2024(04): 79-87 .
    15. 王树明. 空气湿度对煤自燃特性及氧化动力学参数的影响研究. 煤矿安全. 2024(04): 98-105 .
    16. 王涛,董哲,盛禹淮,南凡,杨哲,杨鹏,孟帆,罗振敏. 卤代烷气体灭火剂促进-抑制瓦斯燃爆特性试验. 煤炭科学技术. 2024(04): 265-274 . 本站查看
    17. 孟祥宁,梁运涛,郭宝龙,孙勇,田富超. 卤盐阻化剂对煤自燃阻化作用的定量识别及机理. 煤炭科学技术. 2024(06): 132-141 . 本站查看
    18. 于秋鸽,尹希文,樊振丽,甘志超,浮耀坤. 基于矿化反应过程三阶段划分的粉煤灰高效矿化方法研究. 煤炭科学技术. 2024(06): 253-260 . 本站查看
    19. 李倓,赵恒泽,李晔,赵艺. 固体废弃物制备矿用防灭火复合凝胶研究进展. 煤炭科学技术. 2024(08): 96-105 . 本站查看
    20. 奚弦,桑树勋,刘世奇. 煤矿区固废矿化固定封存CO_2与减污降碳协同处置利用的研究进展. 煤炭学报. 2024(08): 3619-3634 .
    21. 王慧,苏晓军,刘西西,王建,张佳敏. 含XG/HPMC粉煤灰胶体抑制煤自燃特性的实验研究. 煤矿安全. 2024(09): 100-109 .
    22. 高志新,徐效栋,陈玉,李文林,孙路路. 改性示踪阻化液的渗润-阻化性能研究. 矿业研究与开发. 2024(10): 174-180 .
    23. 杜常博,程传旺,易富,黄惠杰,孙玮泽,陶晗. 复配表面活性剂对烟煤润湿性影响及微观机理研究. 煤炭科学技术. 2024(11): 346-355 . 本站查看
    24. 姜小龙,孙明,常建平,董红娟. 矿井煤自燃防灭火材料阻燃机理综述. 内蒙古科技大学学报. 2024(03): 226-229 .
    25. 李金虎,黄珏洁,陆伟,徐天硕,汪洋. 煤中高活性含碳固体自由基与煤自燃反应性的相关关系. 煤炭科学技术. 2024(12): 127-142 . 本站查看
    26. 周涛,胡振琪,阮梦颖,刘曙光,张驭航. 基于无人机遥感的煤矸石山植被分类. 煤炭科学技术. 2023(05): 245-259 . 本站查看
    27. 尹希文,于秋鸽,甘志超,浮耀坤,樊振丽,纪龙. 高钙粉煤灰固碳降碱反应特性及煤矿井下规模化利用新途径. 煤炭学报. 2023(07): 2717-2727 .

    Other cited types(8)

Catalog

    Article views (255) PDF downloads (162) Cited by(35)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return