Advance Search

HOU Xiaowei,ZHANG Jinming,ZHU Yanming,et al. Distribution and geological controls on gas-bearing section of coal measure gases in Qinshui Basin[J]. Coal Science and Technology,2023,51(S2):141−151

. DOI: 10.13199/j.cnki.cst.2022-2081
Citation:

HOU Xiaowei,ZHANG Jinming,ZHU Yanming,et al. Distribution and geological controls on gas-bearing section of coal measure gases in Qinshui Basin[J]. Coal Science and Technology,2023,51(S2):141−151

. DOI: 10.13199/j.cnki.cst.2022-2081

Distribution and geological controls on gas-bearing section of coal measure gases in Qinshui Basin

Funds: 

National Natural Science Foundation of China(42102208); Basic Research Funds for Central Universities (JZ2023HGTB0236); Anhui Province Collaborative Innovation Funding Project for Universities (GXXT-2021-018)

More Information
  • Received Date: November 30, 2022
  • Available Online: February 01, 2024
  • To study the characteristics of coupled accumulation and determine the geological control effects on coal measures gases (CMGs), coal measures of the Carboniferous-Permian Taiyuan and Shanxi formations at Qinshui Basin were selected as the target formations. Various methods including field data collection, field/lab measurements, and theoretical analyses were applied to described the spatial superposition of CMG reservoirs, quantitatively determine the multi-scale pore system, identify the spatial development pattern of CMGs gas-bearing section, and clarify the types of CMGs coupled accumulation and geological controls. Results show that coal measures deposited at the unique marine-terrigenous depositional environment was characterized by lithological diversity and cyclic superposition which was served as the potential basics for coupled accumulation and co-exploration/development of CMGs. The abundance of the organic matter gradually increased from the “inorganic reservoir” to “organic reservoir”, forming a continuous rock sequence without a natural boundary in target coal measures. Gas-bearing sections was characterized by a vertically intermittent distribution and the dominant coupled accumulation assemblages can be subdivided into: shale gas dominated coupled accumulation type, CBM dominated coupled accumulation type, and multiple CMGs coupled accumulation type. Obviously, the effective gas-bearing sections need the appropriate combination of source, reservoir and cap. Coal reservoirs directly controlled the distribution of effective gas-bearing section. Reservoir burial conditions restricted the possibility of an effective gas-bearing section. Moreover, coals were believed to be more favorable for independent coalbed methane accumulation, whereas shale gas and sandstone gas required extremely strict geological, spatial and temporal conditions. Additionally, both organic-inorganic fabric and physical characteristics limited the potential of effective gas-bearing sections. Inspired by the findings of this study, further studies on the coupled accumulation mechanism and the co-exploration evaluation system of CMGs should be continuously conducted.

  • [1]
    邹才能,杨智,黄士鹏,等. 煤系天然气的资源类型、形成分布与发展前景[J]. 石油勘探与开发,2019,46(3):433−442.

    ZOU Caineng,YANG Zhi,HUANG Shipeng,et al. Resource types,formation,distribution and prospects of coal-measure gas[J]. Petroleum Exploration and Development,2019,46(3):451−462.
    [2]
    邹才能,杨 智,董大忠,等. 非常规源岩层系油气形成分布与前景展望[J]. 地球科学,2022,47(5):1517−1533.

    ZOU Caineng,YANG Zhi,DONG Dazhong,et al. Formation,distribution,and prospect of unconventional hydrocarbons in source rock strata in China[J]. Earth Science,2022,47(5):1517−1533.
    [3]
    侯晓伟,朱炎铭,付常青,等. 沁水盆地压裂裂缝展布及对煤系“三气”共采的指示意义[J]. 中国矿业大学学报,2016,45(4):729−738.

    HOU Xiaowei,ZHU Yanming,FU Changqing,et al. Fractures distribution of Qinshui basin and its indicative significance to unconventional gas co-exploration in coal measures[J]. Journal of China University of Mining & Technology,2016,45(4):729−738.
    [4]
    屈晓荣,朱炎铭,张庆辉. 海陆过渡相煤系非常规天然气储层特征及共探共采浅析—以榆社-武乡区块为例[J]. 西安石油大学学报,2017,32(3):1−8.

    QU Xiaorong,ZHU Yanming,ZHANG Qinghui. Reservoir Characteristics and co-exploration and concurrent production analysis of unconventional natural gases in transitional facies coal measures:taking Yushe-Wuxiang block as an example[J]. Journal of Xi’an Shiyou,2017,32(3):1−8.
    [5]
    林中月,刘 亢,魏迎春. 沁水盆地中北部石炭-二叠纪煤系构造演化特征[J]. 煤田地质与勘探,2020,68(3):1−7.

    LIU Zhongyue,LIU Ka ng,WEI Yingchun. characteristics of tectonic evolution of carboniferous-permian coal measures in the north-central Qinshui basin[J]. Coal Geology & Exploration,2020,68(3):1−7.
    [6]
    LI Ruirui,HOU Xiaowei,CHEN Luwang,et al. Multifractal investigation on multi-scale pore structure heterogeneity of high rank coal reservoirs[J]. Natural Resources Research,2022,31(3):1665−1685. doi: 10.1007/s11053-022-10046-7
    [7]
    蔡益栋,高国森,刘大锰,等. 鄂尔多斯盆地东缘临兴中区煤系气富集地质条件及成藏模式[J]. 天然气工业,2022,42(11):25−36.

    CAI Yidong,GAO Guosen,LIU Dameng,et al. Geological conditions for coal measure gas enrichment and accumulation models in Linxingzhong Block along the eastern margin of the Ordos Basin[J]. Natural Gas Industry,2022,42(11):25−36.
    [8]
    侯晓伟. 沁水盆地深部煤系气储层控气机理及共生成藏效应[D]. 徐州:中国矿业大学,2020.

    HOU Xiaowei. Study on gas controlling mechanism and coupled accumulation of deep coal measure gases in Qinshui Basin [J]. Xuzhou:China University of Mining and Technology,2020.
    [9]
    LI Yong,YANG Jianghao,PAN Zhejun,et al. Unconventional natural gas accumulations in stacked deposits:a discussion of upper paleozoic coal-bearing strata in the east margin of the Ordos basin,China[J]. Acta Geologica Sinica (English Edition),2019,93(1):111−129. doi: 10.1111/1755-6724.13767
    [10]
    曹代勇,聂 敬,王安民,等. 鄂尔多斯盆地东缘临兴地区煤系气富集的构造-热作用控制[J]. 煤炭学报,2018,43(6):1526−1532.

    CAO Daiyong,NEI Jing,WANG Anmin,et al. Structural and thermal control of enrichment conditions of coal measure gases in Linxing block of eastern Ordos Basin[J]. Journal of China Coal Society,2018,43(6):1526−1532.
    [11]
    胡进奎,杜文凤. 浅析煤系地层“三气合采”可行性[J]. 地质论评,2017,63(S1):83−84.

    HU Jinkui,DU Wenfeng. Analysis on Feasibility of Three Gas Co-Exploration in Coal Measure Strata[J]. Geological Review,2017,63(S1):83−84.
    [12]
    傅雪海,张 苗,张庆辉,等. 山西省域石炭二叠纪煤系泥页岩气储层评价指标体系[J]. 煤炭学报,2018,43(6):1654−1660.

    FU Xuehai,ZHANG Miao,ZHANG Qinghui,et al. Evaluation index system for the Permo-Carboniferous mud shale reservoirs of coal measures in Shanxi Province[J]. Journal of China Coal Society,2018,43(6):1654−1660.
    [13]
    秦 勇,吴建光,李国璋,等. 煤系气开采模式探索及先导工程示范[J]. 煤炭学报,2020,45(7):2513−2522.

    QIN Yong,WU Jianguo,LI Guozhang,et al. Patterns and pilot project demonstration of coal measures gas production[J]. Journal of China Coal Society,2020,45(7):2513−2522.
    [14]
    CUMELLA S P,WOODRUFF W F,REVIL A. Piceance Basin Mesaverde anomalous self-potential response:Identification of capillary seals in a basin-centered gas accumulation[J]. AAPG Bulletin.,2017,101(1):19−37. doi: 10.1306/06201615130
    [15]
    HOU Bing,CUI Zhuang,DING Jihui,et al. Perforation optimization of layer-penetration fracturing for commingling gas production in coal measure strata[J]. Petroleum Science,2022,19(7):1718−1734.
    [16]
    张 健,申 建,朱苏阳,等. 鄂尔多斯盆地东缘煤系气合采接替方案优化[J]. 煤炭学报,2022,47(11):3965−3974.

    ZHANG Jian,SHEN Jian,ZHU Suyang,et al. Productivity prediction and gas production technology of superimposed coal measure gas in the eastern margin of Ordos Basin[J]. Journal of China Coal Society,2022,47(11):3965−3974.
    [17]
    HOU Xiaowei,WANG Yang,ZHU Yanming,et al. Pore structure complexity and its significance to the petrophysical properties of coal measure gas reservoirs in Qinshui Basin,China[J]. Frontiers of Earth Science,2021,15(4):860−875. doi: 10.1007/s11707-021-0919-4
    [18]
    刘 闯. 鄂尔多斯盆地东缘上古生界煤系气共生组合模式[J]. 复杂油气藏,2022,15(2):1−7.

    LIU Chuang. Symbiotic combination model of coal measures and gas in Upper Paleozoic in the eastern margin of Ordos Basin[J]. Complex Hydrocarbon Reservoirs,2022,15(2):1−7.
    [19]
    HOU Xiaowei,ZHU Yanming,YAO Haipeng. Coupled Accumulation Characteristics of Carboniferous-Permian Coal Measure Gases in the Northern Ordos Basin,China[J]. Arabian Journal of Geosciences,2018,11(7):156. doi: 10.1007/s12517-018-3512-8
    [20]
    朱炎铭,侯晓伟,崔兆帮,等. 河北省煤系天然气资源及其成藏作用[J]. 煤炭学报,2016,41(1):202−211.

    ZHU Yanming,HOU Xiaowei,CUI Zhaobang,et al. Resources and reservoir formation of unconventional gas in coal measure,Hebei Province[J]. Journal of China Coal Society,2016,41(1):202−211.
    [21]
    谢英刚,孟尚志,万 欢,等. 临兴地区煤系地层多类型天然气储层地质条件分析[J]. 煤炭科学技术,2015,43(9):71−75.

    XIE Yinggang,MENG Shangzhi,WAN Huan,et al. Analysis on geological conditions of multi type natural gas reservoir in coal measure strata of Linxing area[J]. Coal Science and Technology,22015,43(9):71−75.
    [22]
    HOU Xiaowei,LIU Shimin,ZHU Yanming,et al. Experimental and Theoretical Investigation on Sorption Kinetics and Hysteresis of Nitrogen,Methane,and Carbon Dioxide in Coals[J]. Fuel,2020,268:117349. doi: 10.1016/j.fuel.2020.117349
    [23]
    钟建华,刘 闯,吴建光,等. 鄂尔多斯盆地东缘临兴地区煤系气共生成藏特征[J]. 煤炭学报,2018,43(6):1517−1525.

    ZHONG Jianhua,LIU Chuang,WU Jianguang,et al. Symbiotic accumulation characteristics of coal measure gas in Linxing Block,eastern Ordos Basin[J]. Journal of China Coal Society,2018,43(6):1517−1525.
    [24]
    郑力会,魏攀峰,张 峥,等. 联探并采:非常规油气资源勘探开发持续发展自我救赎之路[J]. 天然气工业,2017,37(5):126−140.

    ZHENG Lihui,WEI Panfeng,ZHANG Zheng,et al. Joint exploration and development:A self-salvation road to sustainable development of unconventional oil and gas resources[J]. Natural Gas Industry,2017,37(5):126−140.
    [25]
    秦 勇,申 建,史 锐. 中国煤系气大产业建设战略价值与战略选择[J]. 煤炭学报,2022,47(1):371−387.

    QIN Yong,SHEN Jian,SHI Rui. Strategic value and choice on construction of large CMG industry in China[J]. Journal of China Coal Society,2022,47(1):371−387.
    [26]
    毕彩芹,周 阳,姚忠岭,等. 鸡西盆地梨树井田煤系气储层特征及改造工艺探索[J]. 煤炭科学技术,2021,49(12):127−137.

    BI Caiqin,ZHOU Yang,YAO Zhongling,et al. Exploration of coal-measure gas reservoir characteristics and reforming technology in Lishu Mine Field of Jixi Basin[J]. Coal Science and Technology,2021,49(12):127−137.
    [27]
    郭 晨,秦 勇,易同生,等. 煤层气合采地质研究进展述评[J]. 煤田地质与勘探,2022,50(3):42−57.

    GUO Chen,QIN Yong,YI Tongsheng,et al. Review of the progress of geological research on coalbed methane co-production[J]. Coal Geology & Exploration,2022,50(3):42−57.
    [28]
    HOU Xiaowei,ZHU Yanming,CHEN Shangbin,et al. Gas flow mechanisms under the effects of pore structures and permeability characteristics in source rocks of coal measures in Qinshui Basin,China[J]. Energy Exploration & Exploitation,2017,35(3):338−355.
    [29]
    秦 勇. 中国煤系气共生成藏作用研究进展[J]. 天然气工业,2018,38(4):26−36.

    QIN Yong. Research progress of symbiotic accumulation of coal measure gas in China[J]. Natural Gas Industry,2018,38(4):26−36.
    [30]
    杨玉平,钟建华,孙玉凯,等. 吐哈盆地水西沟群“近生近储”型致密砂岩气藏特征及其成藏机制[J]. 中国石油大学学报,2014,38(4):34−41.

    YANG Yuping,ZHONG Jianhua,SUN Yukai,et al. Discussion on characteristics and accumulation mechanisms of “proximal-generation and proximal storage” type tight sandstone gas accumulations in Shuixigou Group,Turpan-Hami Basin[J]. Journal of China University of Petroleum,2014,38(4):34−41.
    [31]
    秦 勇. 煤系气聚集系统与开发地质研究战略思考[J]. 煤炭学报,2021,46(8):2387−2399.

    QIN Yong. Strategic thinking on research of coal measure gas accumulation system and development geology[J]. Journal of China Coal Society,2021,46(8):2387−2399.
    [32]
    HOU Xiaowei,LIU Shimin,LI Guofu,et al. Quantifying and modeling of in situ stress evolutions of coal reservoirs for helium,methane,nitrogen and CO2 Depletions[J]. Rock Mechanics and Rock Engineering,2021,54(8):3701−3719. doi: 10.1007/s00603-021-02511-1
    [33]
    张吉振,李贤庆,张学庆,等. 煤系页岩储层孔隙结构特征和演化[J]. 煤炭学报,2019,44(S1):195−204.

    ZHANG Jizhen,LI Xianqing,ZHANG Xueqing,et al. Microscopic characteristics of pore structure and evolution in the coal-bearing shale[J]. Journal of China Coal Society,2019,44(S1):195−204.
    [34]
    HOU Xiaowei,ZHU Yanming,CHEN Shangbin,et al. Investigation on Pore Structure and Multifractal of Tight Sandstone Reservoirs in Coal Bearing Strata Using LF-NMR Measurements[J]. Journal of Petroleum Science and Engineering,2020,187:106757. doi: 10.1016/j.petrol.2019.106757
    [35]
    龚 卓,陈尚斌,李学元,等. 基于AFM的巫溪2井页岩储层孔隙特征研究[J]. 煤炭科学技术,2022,50(7):216−223.

    GONG Zhuo,CHEN Shangbin,LI Xueyuan,et al. Research on pore characteristics of shale reservoir in Wuxi No. 2 well based on AFM[J]. Coal Science and Technology,2022,50(7):216−223.
    [36]
    宋 岩,高凤琳,唐相路,等. 海相与陆相页岩储层孔隙结构差异的影响因素[J]. 石油学报,2020,41(12):1501−1512.

    Song Yan,Gao Fenglin,Tang Xianglu,et al. Influencing factors of pore structure differences between marine and terrestrial shale reservoirs[J]. Acta Petrolei Sinica,2020,41(12):1501−1512.
    [37]
    张曼婷,付 炜,姜秉仁,等. 黔北煤田上二叠统龙潭组煤系页岩气储层特征与勘探潜力评价[J]. 煤炭科学技术,2022,50(8):133−139.

    ZHANG Manting,FU Wei,JIANG Bingren,et al. Shale gas reservoir characteristics and exploration potential analysis of Longtan Formation of the upper Permian Series in Qianbei Coalfield[J]. Coal Science and Technology,2022,50(8):133−139.
  • Related Articles

    [1]LI Haitao, QI Qingxin, DU Weisheng, ZHANG Haikuan, YANG Guanyu, WANG Shouguang, SHI Xiaoshan, LI Chunyuan, CUI Chunyang, ZHENG Weiyu, ZHENG Jianwei, HE Tuan, ZHU Wei. Digital rock mechanics solutions for underground engineering problems such as coal mining[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(9): 150-161. DOI: 10.12438/cst.2024-0852
    [2]HU Haiyang, CHEN Jie, LOU Yi, LI Yukui. Geological and engineering factors of high water production in coalbed methane wells and water control measures[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(10): 151-158.
    [3]YANG Heng, LUO Xian, SUN Changyan. Research on law of coalbed methane enrichment and main controlling factors in Jiaozuo Machang exploration area[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(3).
    [4]WANG Weixu HE Manjiang WANG Xiyou JIANG Pei PENG Lisha DU Yue, . Analysis on main controlling factors and comprehensive evaluation of coalbed methane production capacity of Junlian Block[J]. COAL SCIENCE AND TECHNOLOGY, 2017, (9).
    [5]Xiong Xianyue Bian Liheng Wang Wei Wang Shemin Wang Hemiao Zhang Ying Qian Shaocong, . Research on main geological controlling factors of coal reservoir indirect fracturing in Hancheng Block[J]. COAL SCIENCE AND TECHNOLOGY, 2017, (6).
    [6]HAO Fu-kun LI Hai-tao ZHOU Kun WANG Xin, . Study on Numerical Simulation of Main Control Factors for Energy Distribution of Mine Pressure Bump[J]. COAL SCIENCE AND TECHNOLOGY, 2014, (4).
  • Cited by

    Periodical cited type(5)

    1. 郭世情, 陈汉, 蒋沛峰, 郭鹏飞, 孙毅, 许平保, 狄宏规. 富水粉细砂层盾构渣土改良与喷涌防治试验研究. 城市轨道交通研究. 2025(06)
    2. 郑顺华,王迎超,陈帆,张政,李青理,冯子豪. 地铁隧道涌水涌砂灾害特征及灾变模式分析. 浙江大学学报(工学版). 2025(01): 152-166 .
    3. 刘林林,孙宪春. 北京市粉细砂高承压地层暗挖工程施工涌水涌砂事件预防及应急处置. 运输经理世界. 2025(01): 136-138 .
    4. 史秋艾. 珠江三角洲西北部晚第四纪沉积演化研究. 中国煤炭地质. 2024(07): 25-28 .
    5. 杨晶晶,陈健,刘伟明,赵新杰,吴晓东. 珠江三角洲东平水道的形成演变及工程意义. 煤炭工程. 2024(S1): 171-176 .

    Other cited types(2)

Catalog

    Article views (54) PDF downloads (44) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return