DING Ziwei,GAO Chengdeng,WANG Yaosheng,et al. Quantitative analysis of meso-structured and representative elementary volume determination of low rank long flame coal[J]. Coal Science and Technology,2023,51(3):116−129
. DOI: 10.13199/j.cnki.cst.2022-2054Citation: |
DING Ziwei,GAO Chengdeng,WANG Yaosheng,et al. Quantitative analysis of meso-structured and representative elementary volume determination of low rank long flame coal[J]. Coal Science and Technology,2023,51(3):116−129 . DOI: 10.13199/j.cnki.cst.2022-2054 |
As a basic method to quantify the scale effect of porous media materials, representative elementary volume (REV) is an effective means to construct the macro-meso structure of coal. In order to improve the accuracy of REV results of coal meso-structure, a quantitative characterization method of coal meso-structure was proposed based on the study of pore-fracture structure characteristics at meso-scale of coal samples. Based on the binary images of pore-fracture at 423 scales at different positions and different fracture directions of coal samples, the geometric characteristics of coal meso-structure were analyzed from three aspects: pore-fracture distribution density, geometric shape and orientation. Based on the sampling method considering the heterogeneity and anisotropy of coal, the spatial effect and directional effect of REV size are analyzed. Finally, the reasonable microscopic REV size of coal sample is determined by the coefficient of variation method. The results show that: ① A method for accurate identification and quantitative analysis of pore fracture structure is proposed for SEM images of coal samples with uneven gray level, blurred boundary and low contrast. ② A quantitative characterization system of meso-structure reflecting the anisotropy of coal samples was established, including porosity, overall shape factor, fractal dimension and directional distribution coefficient. ③ Compared with the parallel bedding, the micro-fractures in the vertical bedding direction are more developed, the porosity is 2 times that of the parallel bedding, the contribution rate of large aperture pores is 85%, and it has strong spatial filling ability. The overall morphology of pores and fractures is poor, but the edge morphology is smooth and the directional distribution tends to be simpler. ④ Based on the acceptable value of the coefficient of variation of 10%, the size of the coal meso-structure characterization unit is determined to be 200 μm × 200 μm.
[1] |
盛金昌,刘继山,赵 坚. 基于图像数字化技术的裂隙岩体非稳态渗流分析[J]. 岩石力学与工程学报,2006,25(7):1402−1407. doi: 10.3321/j.issn:1000-6915.2006.07.016
SHENG Jinchang,LIU Jishan,ZHAO Jian. Analysis of transient fluid flow in fractured rock masses with digital image-based method[J]. Chinese Journal of Rock Mechanics and Engineering,2006,25(7):1402−1407. doi: 10.3321/j.issn:1000-6915.2006.07.016
|
[2] |
王 伟,赵毅鑫,高艺瑞,等. 层理和预制裂纹方向对煤断裂力学性质影响规律试验研究[J]. 岩石力学与工程学报,2022,41(3):433−445. doi: 10.13722/j.cnki.jrme.2021.0735
WANG Wei,ZHAO Yixin,GAO Yirui,et al. Experimental research of influences of bedding and pre-crack directions on fracture characteristics of coal[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(3):433−445. doi: 10.13722/j.cnki.jrme.2021.0735
|
[3] |
鞠 杨,任张瑜,郑江韬,等. 岩石灾变非连续结构与多物理场效应的透明解析与透明推演[J]. 煤炭学报,2022,47(1):210−232. doi: 10.13225/j.cnki.jccs.YG21.2067
JU Yang,REN Zhangyu,ZHENG Jiangtao,et al. Transparentized solutions and interpretation for the effects of discontinuous structures and multiphysics on rock failure[J]. Journal of China Coal Society,2022,47(1):210−232. doi: 10.13225/j.cnki.jccs.YG21.2067
|
[4] |
陈从新,刘秀敏,刘才华. 数字图像技术在岩石细观力学研究中的应用[J]. 岩土力学,2010,31(S1):3468−3472. doi: 10.3969/j.issn.1000-7598.2010.z1.009
CHEN Congxin,LIU Xiumin,LIU Caihua. Application of digital image ssing to rock mesomechanics[J]. Rock and Soil Mechanics,2010,31(S1):3468−3472. doi: 10.3969/j.issn.1000-7598.2010.z1.009
|
[5] |
孙传猛,曹树刚,李 勇. 基于LBF改进模型的煤岩细观结构研究[J]. 煤炭学报,2015,40(2):331−341. doi: 10.13225/j.cnki.jccs.2014.0250
SUN Chuanmeng,CAO Shugang,LI Yong. Investigation on meso-structure of coal and rock based on the modified LBF model[J]. Journal of China Coal Society,2015,40(2):331−341. doi: 10.13225/j.cnki.jccs.2014.0250
|
[6] |
宫伟力,李 晨. 煤岩结构多尺度各向异性特征的SEM图像分析[J]. 岩石力学与工程学报,2010,29(S1):2681−2689.
GONG Weili,LI Chen. Multi-scale and anisotropic characterization of coal structure based on SEM image analysis[J]. Chinese Journal of Rock Mechanics and Engineering,2010,29(S1):2681−2689.
|
[7] |
丁自伟,李小菲,唐青豹,等. 砂岩颗粒孔隙分布分形特征与强度相关性研究[J]. 岩石力学与工程学报,2020,39(9):1787−1796. doi: 10.13722/j.cnki.jrme.2019.1555
DING Ziwei,LI Xiaofei,TANG Qingbao,et al. Study on correlation between fractal characteristics of pore distribution and strength of sandstone particles[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(9):1787−1796. doi: 10.13722/j.cnki.jrme.2019.1555
|
[8] |
DING Ziwei,LI Xiaofei,HUANG Xing,et al. Feature extraction, recognition, and classification of acoustic emission waveform signal of coal rock sample under uniaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences,2022,160:105262.
|
[9] |
DING Ziwei,LI Xiaofei,TANG Qingbao,et al. Research on rock crack classification based on acoustic emission waveform feature extraction technology[J]. Lithosphere,2022,2022(1):5804064.
|
[10] |
曹树刚,孙传猛,郭 平,等. 基于改进的C-V 模型煤岩细观裂隙图像处理及其应用[J]. 岩石力学与工程学报,2015,34(S1):3074−3081.
CAO Shugang,SUN Chuanmeng,GUO Ping,et al. Image processing and its applications of meso-crack of coal based on modified C-V model[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(S1):3074−3081.
|
[11] |
邹俊鹏,陈卫忠,杨典森,等. 基于SEM的珲春低阶煤微观结构特征研究[J]. 岩石力学与工程学报,2016,35(9):1805−1814. doi: 10.13722/j.cnki.jrme.2015.1390
ZOU Junpeng,CHEN Weizhong,YANG Diansen,et al. Microstructural characteristics of low-rank coal from Hunchun based on SEM[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(9):1805−1814. doi: 10.13722/j.cnki.jrme.2015.1390
|
[12] |
LONG J C S,REMER J S,WILSON C R,et al. Porous media equivalents for networks of discontinuous fractures[J]. Water Resour Res,1982,18:645−658. doi: 10.1029/WR018i003p00645
|
[13] |
ODA M. A method for evaluating the representative elementary volume based on joint survey of rock masses[J]. Can Geotech J,1988,25:440−447. doi: 10.1139/t88-049
|
[14] |
BEAR J. Dynamics of fluids in porous media[M]. New York: American Elsevier, 1972.
|
[15] |
刘 语,张 巍,梁小龙,等. 南京粉细砂空间孔隙结构表征单元体确定[J]. 岩土力学,2019,40:2723−2729. doi: 10.16285/j.rsm.2018.0615
LIU Yu,ZHANG Wei,LIANG Xiaolong,et al. Determination on representative element volume of Nanjing silty-fine sand for its spatial pore structure[J]. Rock and Soil Mechanics,2019,40:2723−2729. doi: 10.16285/j.rsm.2018.0615
|
[16] |
程志林,隋微波,宁正福,等. 数字岩芯微观结构特征及其对岩石力学性能的影响研究[J]. 岩石力学与工程学报,2018,37:449−460. doi: 10.13722/j.cnki.jrme.2017.1122
CHENG Zhilin,SUI Weibo,NING Zhengfu,et al. Microstructure characteristics and its effects on mechanical properties of digital core[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37:449−460. doi: 10.13722/j.cnki.jrme.2017.1122
|
[17] |
卢 波,葛修润,朱冬林,等. 节理岩体表征单元体的分形几何研究[J]. 岩石力学与工程学报,2005,24:1355−1361. doi: 10.3321/j.issn:1000-6915.2005.08.013
LU Bo,GE Xiurui,ZHU Donglin,et al. Fractal study on the representative elementary volume of jointed rock masses[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24:1355−1361. doi: 10.3321/j.issn:1000-6915.2005.08.013
|
[18] |
WU Hao,ZHOU Yingfang,YAO Yanbin,et al. Imaged based fractal characterization of micro-fracture structure in coal[J]. Fuel,2019,239:53−62. doi: 10.1016/j.fuel.2018.10.117
|
[19] |
刘 括. 孟村煤矿4号煤地球化学特征研究[D]. 邯郸: 河北工程大学, 2018.
LIU Kuo. Geochemical characteristics of NO. 4 coal in Mengcun mine[D]. Handan: Hebei University of Engineering, 2018.
|
[20] |
王 超,王川婴,王益腾,等. 基于孔壁光学图像的岩石孔隙结构识别与分析方法研究[J]. 岩石力学与工程学报,2021,40(9):1894−1901. doi: 10.13722/j.cnki.jrme.2021.0558
WANG Chao,WANG Chuanying,WANG Yiteng,et al. Research on identification and analysis method of rock pore structure based on optical images of borehole walls[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(9):1894−1901. doi: 10.13722/j.cnki.jrme.2021.0558
|
[21] |
DING,Ziwei,TANG Qingbao,FENG Ruimin,et al. A novel technique for determining transverse permeability of sorptive reservoirs[J]. Geomechanics and Geophysics for Geo-energy and Geo-resources,2022,8(6):1−20.
|
[22] |
DING Ziwei, JIA Jindui, TANG Qingbao, et al. Mechanical Properties and Energy Damage Evolution Characteristics of Coal Under Cyclic Loading and Unloading[J]. Rock Mechanics and Rock Engineering. 2022, 55, 4765−4781.
|
[23] |
王 勇,孟巧荣,高 力,等. 热解无烟煤微细观孔裂隙结构随温度的演化规律[J]. 煤炭学报,2020,45(S1):300−307. doi: 10.13225/j.cnki.jccs.2020.0088
WANG Yong,MENG Qiaorong,GAO Li,et al. Evolution law of micro-meso pore-fracture structure of anthracite in pyrolysis[J]. Journal of China Coal Society,2020,45(S1):300−307. doi: 10.13225/j.cnki.jccs.2020.0088
|
[24] |
唐 海,易 帅,袁 超,等. 砂岩加载过程中的细观损伤试验研究[J]. 岩石力学与工程学报,2019,38(3):487−498. doi: 10.13722/j.cnki.jrme.2018.1087
TANG Hai,YI Shuai,YUAN Chao,et al. Experimental study on meso-damage of sandstone during loading process[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(3):487−498. doi: 10.13722/j.cnki.jrme.2018.1087
|
[25] |
SONG Shuaibing,LIU Jiangfeng,NI Hongyang,et al. A new automatic thresholding algorithm for unimodal gray-level distribution images by using the gray gradient information[J]. Journal of Petroleum Science and Engineering,2020,190:107074. doi: 10.1016/j.petrol.2020.107074
|
[26] |
LIU Jiangfeng,CAO Xulou,XU Jerry,et al. A new method for threshold determination of gray image[J]. Geomechanics and Geophysics for Geo-energy and Geo-resources,2020,6(4):72. doi: 10.1007/s40948-020-00198-2
|
[27] |
Ходот B. B. 煤与瓦斯突出[M]. 北京: 中国工业出版社, 1966, 27-30.
|
[28] |
涂新斌,王思敬. 图像分析的颗粒形状参数描述[J]. 岩土工程学报,2004,26(5):659−662. doi: 10.3321/j.issn:1000-4548.2004.05.018
TU Xinbin,WANG Sijing. Particle shape descriptor in digital image analysis[J]. Chinese Journal of Geotechnical Engineering,2004,26(5):659−662. doi: 10.3321/j.issn:1000-4548.2004.05.018
|
[29] |
MOORE C A, DONALDSON C F. Quantifying soil microstructure using fractals[J]. Geotechnique. 1995, 45(1): 105−116.
|
[30] |
LIU Chun, SHI Bin, ZHOU Jian, et al. Quantification and characterization of microporosity by image processing, geometric measurement and statistical methods: Application on SEM images of clay materials[J]. Applied Clay Science. 2011, 54: 97−106.
|
[31] |
CLUNI F,GUSELLA V. Homogenization of non-periodic masonry structures[J]. International Journal of Solids and Structures,2004,41:1911−1923. doi: 10.1016/j.ijsolstr.2003.11.011
|
[32] |
王晓明,郑银河. 裂隙岩体表征单元体及尺寸效应研究进展[J]. 岩土力学,2015,36:3456−3464. doi: 10.16285/j.rsm.2015.12.016
WANG Xiaoming,ZHENG Yinhe. Review of advances in investigation of representative elementary volume and scale effect of fractured rock masses[J]. Rock and Soil Mechanics,2015,36:3456−3464. doi: 10.16285/j.rsm.2015.12.016
|
[33] |
褚召祥,周国庆,饶中浩,等. 岩土孔隙率表征单元体及其分形近似判据[J]. 中国科学:技术科学,2021,51:1107−1126.
CHU Zhaoxiang,ZHOU Guoqing,RAO Zhonghao,et al. Porosity-based representative elementary volume for geomaterials and its fractal theory-based approximatecriterion[J]. Scientia Sinica(Technologica),2021,51:1107−1126.
|
[34] |
MIN K B,JIING L. Numerical determination of the equivalent elastic compliance tensor for fractured rock masses using the distinct element method[J]. International Journal of Rock Mechanics and Mining Sciences,2003,40(6):795−816. doi: 10.1016/S1365-1609(03)00038-8
|
[35] |
ESMAIELI K,HADJIGEORGIOU J,GRENON M. Estimating geometrical and mechanical REV based on synthetic rock mass models at Brunswick Mine[J]. International Journal of Rock Mechanics and Mining Sciences,2010,47(6):915−926. doi: 10.1016/j.ijrmms.2010.05.010
|
[36] |
MA Wenliang,CHEN Huie,WEN Zhang,et al. Study on representative volume elements considering inhomogeneity and anisotropy of rock masses characterised by non-persistent fractures[J]. Rock Mechanics and Rock Engineering,2021,54:4617−4637. doi: 10.1007/s00603-021-02546-4
|