SUN Jiping,YU Xingchen,WANG Yunquan. Recognition method of coal mine gas and coal dust explosion based on sound spectrogram and SVM[J]. Coal Science and Technology,2023,51(2):366−376
. DOI: 10.13199/j.cnki.cst.2022-2050Citation: |
SUN Jiping,YU Xingchen,WANG Yunquan. Recognition method of coal mine gas and coal dust explosion based on sound spectrogram and SVM[J]. Coal Science and Technology,2023,51(2):366−376 . DOI: 10.13199/j.cnki.cst.2022-2050 |
In order to improve the detection accuracy of coal mine gas and coal dust explosion, recognition method of coal mine gas and coal dust explosion based on the sound spectrogram and SVM was proposed: installing mining pickups in key monitoring areas of underground coal mines, monitoring of working sounds of underground coal mine equipment and environmental sound in real-time. The collected sound was extracted from the sound spectrogram composed of MFCC, and the energy, entropy, contrast, and correlation of 0°, 45°, 90°, and 135° were obtained by calculating the gray co-generation matrix of the sound spectrogram. Calculated their mean and standard deviation as the texture features of the sound spectrogram image, which constituted the feature quantity of the sound, which brought to SVM to establish the sound recognition model of coal mine gas and coal dust explosion. For the sound to be tested, the texture features were also extracted and input to the trained recognition model for sound recognition and classification, which has passed the test verification. Firstly, the MFCC feature values of different sounds, such as mining equipment operation, gas and coal dust explosion were extracted, and the distribution of MFCC feature values of different sounds was analyzed; the sound spectrograms of different sounds were extracted, and the mean and standard deviation of the sound spectrograms of different sounds were analyzed by analyzing the feature parameters of energy, entropy, contrast, and correlation, and the grayscale co-generation matrix feature parameters of the sound spectrograms constitute the feature quantities that can effectively characterize the sound signals. Secondly, the sound to be measured was input into the recognition model established to complete the recognition and classification. The results show that the recognition rate of the proposed method reaches 95%, and the overall recognition performance is higher than others models. Finally, the experimental results of Bayesian parameter optimization show that the recall rate and recognition rate of the optimized SVM recognition model increased by 10% and 3% respectively. It was better than the recognition model before optimization, which can meet the needs of coal mine gas and coal dust explosion sensing and alarming.
[1] |
孙继平. 煤矿瓦斯和煤尘爆炸感知报警与爆源判定方法研究[J]. 工矿自动化,2020,46(6):1−5,11. doi: 10.13272/j.issn.1671-251x.17617
SUN Jiping. Research on method of coal mine gas and coal dust explosion perception alarm and explosion source judgment[J]. Industry and Mine Automation,2020,46(6):1−5,11. doi: 10.13272/j.issn.1671-251x.17617
|
[2] |
孙继平,余星辰. 基于声音识别的煤矿重特大事故报警方法研究[J]. 工矿自动化,2021,47(2):1−5,44. doi: 10.13272/j.issn.1671-251x.17715
SUN Jiping,YU Xingchen. Research on alarm method of coal mine extraordinary accidents based on sound recognition[J]. Industry and Mine Automation,2021,47(2):1−5,44. doi: 10.13272/j.issn.1671-251x.17715
|
[3] |
孙继平,余星辰. 基于CEEMD分量样本熵与SVM分类的煤矿瓦斯和煤尘爆炸声音识别方法[J]. 采矿与安全工程学报,2022,39(5):1061−1070. doi: 10.13545/j.cnki.jmse.2022.0073
SUN Jiping,YU Xingchen. Sound recognition method of coal mine gas and coal dust explosion based on CEEMD component sample entropy and SVM classification[J]. Journal of Mining & Safety Engineering,2022,39(5):1061−1070. doi: 10.13545/j.cnki.jmse.2022.0073
|
[4] |
孙继平,余星辰. 基于声音特征的煤矿瓦斯和煤尘爆炸识别方法[J]. 中国矿业大学学报,2022,51(6):1096−1105.
SUN Jiping,YU Xingchen. Recognition method of coal mine gas and coal dust explosion based on sound characteristics[J]. Journal of China University of Mining & Technology,2022,51(6):1096−1105.
|
[5] |
杜晓冬,滕光辉,TOMAS Norton,等. 基于声谱图纹理特征的蛋鸡发声分类识别[J]. 农业机械学报,2019,50(9):215−220. doi: 10.6041/j.issn.1000-1298.2019.09.025
DU Xiaodong,TENG Guanghui,TOMAS Norton,et al. Classification and recognition of laying hens’ vocalization based on texture features of spectrogram[J]. Transactions of the Chinese Society for Agricultural Machinery,2019,50(9):215−220. doi: 10.6041/j.issn.1000-1298.2019.09.025
|
[6] |
李佳芮,洪 缨. 喘鸣音的声谱图熵特征分析及检测[J]. 声学学报,2020,45(1):131−136. doi: 10.15949/j.cnki.0371-0025.2020.01.016
LI Jiarui,HONG Ying. Wheeze detection method based on spectrogram entropy analysis[J]. Acta Acustica,2020,45(1):131−136. doi: 10.15949/j.cnki.0371-0025.2020.01.016
|
[7] |
曾金芳,黄费贞,白 冰,等. 基于耳蜗谱图纹理特征的声音事件识别[J]. 声学技术,2020,39(1):69−75. doi: 10.16300/j.cnki.1000-3630.2020.01.012
ZENG Jinfang,HUANG Feizhen,BAI Bing,et al. Sound event recognition based on texture features of cochleagram[J]. Technical Acoustics,2020,39(1):69−75. doi: 10.16300/j.cnki.1000-3630.2020.01.012
|
[8] |
韦 娟,丁智恺,宁方立. 基于神经网络的声场景数据声谱图提取方法[J]. 系统工程与电子技术,2021,43(12):3462−3469. doi: 10.12305/j.issn.1001-506X.2021.12.06
WEI Juan,DING Zhikai,NING Fangli. Spectrogram extraction method for acoustic scene data based on neural network[J]. Systems Engineering and Electronics,2021,43(12):3462−3469. doi: 10.12305/j.issn.1001-506X.2021.12.06
|
[9] |
张重远,罗世豪,岳浩天,等. 基于Mel时频谱-卷积神经网络的变压器铁芯声纹模式识别方法[J]. 高电压技术,2020,46(2):413−423. doi: 10.13336/j.1003-6520.hve.20200131005
ZHANG Zhongyuan,LUO Shihao,YUE Haotian,et al. Pattern recognition of acoustic signals of transformer core based on Mel-spectrum and CNN[J]. High Voltage Engineering,2020,46(2):413−423. doi: 10.13336/j.1003-6520.hve.20200131005
|
[10] |
张祥翔,陈永和,傅雨田. 基于改进曲波变换的水面弱纹理提取方法[J]. 光学学报,2021,41(9):52−60.
ZHANG Xiangxiang,CHEN Yonghe,FU Yutian. Extraction method of water surface weak texture based on improved curvelet transformation[J]. Acta Optica Sinica,2021,41(9):52−60.
|
[11] |
李 响,李国正,邓明君,等. 基于语声音谱图像特征的人体疲劳检测方法[J]. 仪器仪表学报,2021,42(2):123−132.
LI Xiang,LI Guozheng,DENG Mingjun,et al. A human fatigue detection method based on speech spectrogram features[J]. Chinese Journal of Scientific Instrument,2021,42(2):123−132.
|
[12] |
姚慧玲,胡 兴,黄影平. 基于光流灰度共生矩阵的视频暴力行为检测[J]. 电子测量技术,2021,44(4):132−137. doi: 10.19651/j.cnki.emt.2005627
Yao Huiling,Hu Xing,Huang Yingping. Video violence detection based on gray level co-occurrence matrix of optical flow[J]. Electronic Measurement Technology,2021,44(4):132−137. doi: 10.19651/j.cnki.emt.2005627
|
[13] |
叶 鹏,王永芳,夏雨蒙,等. 一种融合深度基于灰度共生矩阵的感知模型[J]. 计算机科学,2019,46(3):92−96.
YE Peng,WANG Yongfang,XIA Yumeng,et al. Perceptual model based on GLCM combined with depth[J]. Computer Science,2019,46(3):92−96.
|
[14] |
曹玉超. 基于灰度共生矩阵与回归分析的矿井水灾感知[J]. 工矿自动化,2020,46(9):94−97. doi: 10.13272/j.issn.1671-251x.17678
CAO Yuchao. Mine flood perception based on gray level co-occurrence matrix and regression analysis[J]. Industry and Mine Automation,2020,46(9):94−97. doi: 10.13272/j.issn.1671-251x.17678
|
[15] |
杜秀丽,张 薇,顾斌斌,等. 基于灰度共生矩阵的图像自适应分块压缩感知方法[J]. 计算机科学,2018,45(8):277−282.
DU Xiuli,ZHANG Wei,GU Binbin,et al. GLCM-based adaptive block compressed sensing method for image[J]. Computer Science,2018,45(8):277−282.
|
[16] |
刘 康,陈小林,刘岩俊,等. 基于Gabor和灰度共生矩阵混合特征叶片泵装配质量检测[J]. 液晶与显示,2018,33(11):936−942. doi: 10.3788/YJYXS20183311.0936
LIU Kang,CHEN Xiaolin,LIU Yanjun,et al. Vane pump assembly quality detection based on gabor and gray level co-occurrence matrix hybrid characteristics[J]. Chinese Journal of Liquid Crystals and Displays,2018,33(11):936−942. doi: 10.3788/YJYXS20183311.0936
|
[17] |
肖 达,王润民,邹 孝,等. 基于Gabor变换和灰度梯度共生矩阵的超声无损测温研究[J]. 传感技术学报,2017,30(11):1684−1688. doi: 10.3969/j.issn.1004-1699.2017.11.012
XIAO Da,WANG Runmin,ZOU Xiao,et al. A noninvasive temperature measurement based on gabor transform and gray level gradient co-occurrence matrix using ultrasound[J]. Chinese Journal of Sensors and Actuators,2017,30(11):1684−1688. doi: 10.3969/j.issn.1004-1699.2017.11.012
|
[18] |
李泽辰,杜文凤,胡进奎,等. 基于测井参数的页岩有机碳含量支持向量机预测[J]. 煤炭科学技术,2019,47(6):199−204. doi: 10.13199/j.cnki.cst.2019.06.030
LI Zechen,DU Wenfeng,HU Jinkui,et al. Prediction of shale organic carbon content support vector machine based on logging parameters[J]. Coal Science and Technology,2019,47(6):199−204. doi: 10.13199/j.cnki.cst.2019.06.030
|
[19] |
BERGSTRA J, BARDENET R, BENGIO Y, et al. Algorithms for hyper-parameter optimization [C]// International Conference on Neural Information Processing Systems, 2011.
|
[20] |
SCHINDLER W, LEMKE K, PAAR C. A stochastic model for differential side channel cryptanalysis[C]// International Work shop on Cryptographic Hardware and Embedded Systems, 2005: 30-46.
|
[21] |
石怀涛,尚亚俊,白晓天,等. 基于贝叶斯优化的SWDAE-LSTM滚动轴承早期故障预测方法研究[J]. 振动与冲击,2021,40(18):286−297. doi: 10.13465/j.cnki.jvs.2021.18.036
SHI Huaitao,SHANG Yajun,BAI Xiaotian,et al. Early fault prediction method combining SWDAE and LSTM for rolling bearings based on Bayesian optimization[J]. Journal of vibration and shock,2021,40(18):286−297. doi: 10.13465/j.cnki.jvs.2021.18.036
|
[22] |
杨 欢,吴 震,王 燚,等. 侧信道多层感知器攻击中基于贝叶斯优化的超参数寻优[J]. 计算机应用与软件,2021,38(5):323−330.
YANG Huan,WU Zhen,WANG Yi,et al. Hyper-parameters optimization in side-channel attack of multilayer perceptron based on Byesian optimization[J]. Computer Applications and Software,2021,38(5):323−330.
|
[1] | ZHANG Pengfei, YUAN Yong, HE Yunhua, DAI Shaojun, LI Jiazhen, CHI Xuehai, LI Wei, SUN Xue, ZHANG Jiao, BAI Runcai, FEI Honglu. Blasting vibration velocity prediction of open pit mines based on GRA-EPSO-SVM model[J]. COAL SCIENCE AND TECHNOLOGY, 2025, 53(7): 105-115. DOI: 10.12438/cst.2024-0575 |
[2] | MAO Qinghua, ZHOU Qing, CHAI Jianquan, CHEN Yanzhang, YANG Wenjuan, XUE Xusheng. Adaptive zero velocity correction method for fiber optic inertial navigation system in coal mining roadheader[J]. COAL SCIENCE AND TECHNOLOGY, 2025, 53(5): 313-324. DOI: 10.12438/cst.2024-0165 |
[3] | SUN Jiping, LI Xiaowei. Recognition method of depression degree in mine external fire images[J]. COAL SCIENCE AND TECHNOLOGY, 2025, 53(1): 341-355. DOI: 10.12438/cst.2025-0002 |
[4] | YU Xingchen, LI Xiaowei. Sound identification method of coal mine gas and coal dust explosion based on wavelet scattering transform[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(S1): 70-79. DOI: 10.12438/cst.2022-1849 |
[5] | WANG Hongwei, LI Jin, YAN Zhirui, GUO Junjun, ZHANG Fujing, LI Chao. Roadway anchor hole recognition and positioning method based on image and point cloud fusion[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(5): 249-261. DOI: 10.12438/cst.2023-1050 |
[6] | LIU Peng WEI Huizi, JING Jiangbo, YANG Yanyan, . Predicting technology of gas emission quantity in coal mine based on enhanced CART regression algorithm[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (11). |
[7] | SHAO Liangshan, LI Xiangchen. Indentification of mine water inrush source based on MIV-PSO-SVM[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (8). |
[8] | LYU Wen-hong YANG Tao DONG Xiao-liang ZHENG Xiao-xia ZOU Hui LIANG Quan-quan, . Personnel Fingerprint Positioning Algorithm Based on SVM Classification in Underground Coal Mine[J]. COAL SCIENCE AND TECHNOLOGY, 2014, (11). |
1. |
余葱卉. 基于专利文本挖掘的中国煤矿智能化技术演化分析. 科技和产业. 2025(04): 187-192 .
![]() | |
2. |
孙继平,李小伟. 矿井外因火灾图像凹陷度识别方法. 煤炭科学技术. 2025(01): 341-355 .
![]() | |
3. |
程继杰,刘毅. 基于深度特征的煤矿冲击地压和煤与瓦斯突出图像感知报警方法. 煤炭科学技术. 2024(03): 245-257 .
![]() | |
4. |
李衍志,郭丽敏,张维国,古健,宗井彬,张凯,刘君. 高压釜泄漏声音的高频高阶空间交互识别算法研究. 计算机测量与控制. 2024(10): 169-174 .
![]() | |
5. |
石元来. 基于数据挖掘的榆树坡煤矿隐患分析与风险预警技术研究. 煤矿现代化. 2024(06): 88-92 .
![]() | |
6. |
张涛,李春宇,白文哲,金维正. LIBS技术结合BO优化后的机器学习算法对口香糖分类. 应用激光. 2024(10): 136-146 .
![]() | |
7. |
孙继平,程继杰,王云泉. 基于掩埋图像特征的煤矿冲击地压和煤与瓦斯突出感知报警方法. 工矿自动化. 2023(05): 1-6+21 .
![]() | |
8. |
姜海燕,宋庆辉,宋庆军,刘治江,郝文超. 基于机器视觉的煤矸识别实验教学平台研发. 实验室研究与探索. 2023(11): 124-129 .
![]() |