Citation: | ZHANG Jianguo,WANG Man,ZHANG Guochuan,et al. Prevention and control of deep dynamic disasters and resources green exploitation in Pingdingshan Mining Area[J]. Coal Science and Technology,2023,51(1):295−303. DOI: 10.13199/j.cnki.cst.2022-2039 |
The Pingdingshan mining area mined by China Pingmei Shenma Group is a typical example of deep mining. After 70 years of development, the group always insists on leading production with scientific and technological strength, ensuring safety with technical equipment, deepening its understanding of gas, and has gone through three stages of “passive prevention, active treatment and green use”. The monitoring and warning technology of dynamic disaster can predict the probability of disaster occurrence in advance, and the accuracy of predicting no dynamic disaster can reach 100%. The accuracy rate of power disaster is 80%, so that gas disaster can be prevented and controlled; The efficient anti-reflection extraction technology of gas in low-permeability coal seam reduces the gas treatment cycle from 24 months to 8 months, and the cost of gas treatment for tons of coal is reduced by 60%. The integrated green development and utilization technology of gas “extraction – power generation – refrigeration” can effectively reduce the roadway temperature by 5–10 ℃, increase the gas extraction concentration to 50%, guarantee the mine heating in winter and refrigeration in summer, save 60 000 kW·h of electricity consumption per day, not only eliminate the gas threat, make the mine gas become treasure, but also ensure the national coal supply security. Meet the development needs of the “double carbon” goal. In the future, based on the prevention and control of deep dynamic disasters, the group will actively promote the green utilization of coal transformation, build an industrialization road of safe mining, efficient washing and green transformation of coking coal resources, promote the rapid transformation and upgrading of enterprises, build a leading scientific research and innovation platform in the industry, ensure the security of national energy supply and keep up with the pace of social and economic development.
[1] |
张 抗,焦 扬. 从能源时代更替和“气荒”看我国能源构成多元化和因地因时制宜的战略思维[J]. 中外能源,2018,23(6):1−19.
ZHANG Kang,JIAO Yang. Research on coal industry development and transition in China under the background of carbon meutrality[J]. Sino-Global Energy,2018,23(6):1−19.
|
[2] |
孙旭东,张蕾欣. 碳中和背景下我国煤炭行业的发展与转型研究[J]. 中国矿业,2021,30(2):1−6.
SUN Xudong,ZHANG Leixin. Research on the coal industry development and transition in China under the background of carbon neutrality[J]. China Mining Magazine,2021,30(2):1−6.
|
[3] |
吴建亭,寇建新. 平顶山矿区深部煤炭开采瓦斯防治技术研究[J]. 中国煤层气,2013,10(6):3−5. doi: 10.3969/j.issn.1672-3074.2013.06.001
WU Jianting,KOU Jianxin. Study on gas prevention and control for deep mining of coal in Pingdingshan Minning Area[J]. China Coalbed Methane,2013,10(6):3−5. doi: 10.3969/j.issn.1672-3074.2013.06.001
|
[4] |
张建国. 科学产能和科学开采是未来煤矿发展方向[J]. 科学新闻,2017(10):1.
ZHANG Jianguo. Scientific production capacity and scientific mining are the development direction of coal mine in the future[J]. Science News,2017(10):1.
|
[5] |
张建国. 中国平煤神马集团瓦斯防治体系建设[J]. 煤炭科学技术,2017,45(8):13−18.
ZHANG Jianguo. Construction of gas prevention and control system in China Pingmeishenma Group[J]. Coal Science and Technology,2017,45(8):13−18.
|
[6] |
张建国,王 辉. “四优化一提升”助推煤炭企业科技减人和安全高效实践与启示[J]. 能源与环保,2018,40(7):1−4.
ZHANG Jianguo,WANG Hui. Practice of safe and efficient production with less personnel boosted by “four optimizations and one promotion ” for coal enterprise and its inspiration[J]. China Energy and Environmental Protection,2018,40(7):1−4.
|
[7] |
张建国,王 满,袁 淼,等. 基于瓦斯治理–抽采–利用一体化的深部突出矿井安全绿色开发模式与示范工程[J]. 重庆大学学报,2022,45(2):30−40.
ZHANG Jianguo WANG Man,YUAN Miao. Safe and green exploitation model and demonstration projects of deep outburst mine based on the integration of gas control, extraction and utilization[J]. Journal of Chongqing University,2022,45(2):30−40.
|
[8] |
刘 统. 平顶山矿区难抽煤层微观孔隙结构演化特性及对瓦斯储运的影响[D]. 徐州: 中国矿业大学, 2021: 1–240.
LIU Tong. Evolution Characteristics of Microscopic pore structure of hard-to-drain coal seams in Pingdingshan coalfield and their influences on gas storage and transportation. [D]. Xuzhou: China University of Mining and Technology, 2021: 1–240.
|
[9] |
王桂梁, 琚宜文, 郑孟林. 中国北部能源盆地构造[M]. 徐州: 中国矿业大学出版社, 2007: 1–540.
WANG Guiliang, JU Yiwen, ZHENG Menglin. Structure of energy basin in northern China [M]. Xuzhou: China University of Mining and Technology Press, 2007: 1–540.
|
[10] |
闫江伟. 地质构造对平顶山矿区煤与瓦斯突出的主控作用研究[D]. 焦作: 河南理工大学, 2016: 1–222.
YAN Jiangwei, Study on controlling effect of tectonic structures on coal and gas outburst in the Pingdingshan Mining Area, [D]. Jiaozuo: Henan Polytechnic University, 2016: 1–222.
|
[11] |
国家安全生产监督管理总局. 煤监局对国有重点煤矿开展安全生产专项监察, 2019. [EB/OL](2020-0903)[022-09-20]. https://mp.weixin.qq.com/s/i7d1RBq_PqwcLhQV-oU12Q.
|
[12] |
宫伟东. 平顶山东部矿区的构造应力及其对煤与瓦斯突出的影响[D]. 徐州: 中国矿业大学, 2020: 1–202.
GONG Weidong. Study on tectonic stress and tts inflience on coal and gas outburst in Pingdingshan Rsatern Mining[D]. Xuzhou: China University of Mining Technology-Beijing, 2020: 1–202.
|
[13] |
李延河, 万志军, 于振子, 等. 平顶山矿区地热地质条件及成因分析[J]. 地球物理学进展, 2022, 11(1): 1–14.
LI Yanhe, WAN Zhijun, YU Zhenzi, et al. Analysis of geothermal geological conditions and its genesis in Pingdingshan Mining Area. [J]. Progress in Geophysics, 2022, 11(1): 1–14.
|
[14] |
张建国. 中国平煤神马集团瓦斯综合治理的回顾与展望[J]. 矿业安全与环保,2013,40(5):82−86. doi: 10.3969/j.issn.1008-4495.2013.05.023
ZHANG Jianguo. Review and prospect of comprehensive gas prevention and control of China Pingmeishenma group[J]. Mining Safrty & Environmental Pritection,2013,40(5):82−86. doi: 10.3969/j.issn.1008-4495.2013.05.023
|
[15] |
李 洪. 平煤集团瓦斯综合治理措施及发展方向[J]. 中国煤炭,2002,12(13):32−33.
LI Hong. Comprehensive gas control measures and development direction of Pingmei Group[J]. China Coal,2002,12(13):32−33.
|
[16] |
张建国. 深化瓦斯区域防治"一矿一策"方略[J]. 煤矿安全,2014,45(5):163−166.
ZHANG Jianguo. Advancing regional methane control work by deepening “One Mine One Policy” Strategy[J]. Safety in Coal Mines,2014,45(5):163−166.
|
[17] |
张建国. 平顶山矿区构造环境对煤与瓦斯突出的控制作用[J]. 采矿与安全工程学报,2013,3(43):2−5.
ZHANG Jianguo. Control effect of structure environment to coal and gas outburst in Pingdingshan Mining Area[J]. Journal of Mining & Safety Engineering,2013,3(43):2−5.
|
[18] |
张建国. 流变应力恢复法地应力测试技术研究与应用[J]. 煤矿安全,2015,34(1):1−5.
ZHANG Jianguo. Geostress measurement technology by rheological Stress recovery method and its application[J]. Safety in Coal Mines,2015,34(1):1−5.
|
[19] |
张建国. 平煤超千米深井采动应力特征及裂隙演化规律研究[J]. 中国矿业大学学报,2017,46(5):1041−1049.
ZHANG Jianguo. Mining-induced stress characteristics and fracture evolution law of over one kilometer deep Pingdingshan coal mine[J]. Journal of China University of Mining & Technology,2017,46(5):1041−1049.
|
[20] |
张建国,李红梅,刘依婷,等. 煤尘微细观润湿特性及抑尘剂研发初探:以平顶山矿区为例[J]. 煤炭学报,2021,46(3):812−825.
ZHANG Jianguo,LI Hongmei,LIU Yiting. Micro-wetting characteristics of coal dust and preliminary study on the development of dust suppressant in Pingdingshan Mining Area[J]. Journal of China Coal Socirty,2021,46(3):812−825.
|
[21] |
张建国,刘依婷,王 满,等. 基于分子动力学模拟的非离子表面活性剂对煤润湿性影响机制[J]. 工程科学与技术,2022,54(5):191−202.
ZHANG Jianguo,LIU Yiting,WANG Man. Influence mechanism of nonionic surfactant on coal wettability based on molecular dynamics simulation[J]. Advanced Engineering Sciences,2022,54(5):191−202.
|
[22] |
王 满,王英伟. 平顶山矿区煤体微观结构的扫描电镜分析[J]. 煤矿安全,2014,45(7):169−171. doi: 10.13347/j.cnki.mkaq.2014.07.051
WANG Man,WANG Yingwei. Scanning electron microscope analysis of coal microstructure in Pingdingshan Mine Area[J]. Coal Mine Safety,2014,45(7):169−171. doi: 10.13347/j.cnki.mkaq.2014.07.051
|
[23] |
张建国,林柏泉,翟 成. 穿层钻孔高压旋转水射流割缝增透防突技术研究与应用[J]. 采矿与安全工程学报,2012,29(3):411−415.
ZHANG Jianguo,LIN Boquan,ZHAI Cheng. Research on outburst prevention technology of high pressure hydraulic-cutting seam through layer and ITS Application[J]. Journal of Mining & Safety Engineering,2012,29(3):411−415.
|
[24] |
张建国,翟 成. 深埋藏高应力顺层水力冲孔煤体卸压规律及应用[J]. 工矿自动化,2022,48(10):116−141.
ZHANG Jianguo,ZHAI Cheng. Pressure relief law and application of deep-buried high-stress bedding coal by hydraulic flushing[J]. Journal of Mine Automation,2022,48(10):116−141.
|
[25] |
唐巨鹏,杨森林,李利萍. 不同水力割缝布置方式对卸压防突效果影响数值模拟[J]. 中国地质灾害与防治学报,2012,23(1):61−66. doi: 10.3969/j.issn.1003-8035.2012.01.011
TANG Jupeng,YAMG Senlin,LI Liping. Numerical simulation of the effect of different hydraulic slit arrangement on pressure relief and outburst prevention[J]. Chinese Journal of Geological Hazard and Control,2012,23(1):61−66. doi: 10.3969/j.issn.1003-8035.2012.01.011
|
[26] |
张创业,孙 朋. 平煤股份十二矿开采薄煤层保护层瓦斯治理技术[J]. 中国煤炭,2018,44(5):105−108. doi: 10.3969/j.issn.1006-530X.2018.05.022
ZHANG Chuangye,SUN Peng. Gas control technology for mining thin coal seam protection layer at No. 12 Mine of Pingmeigufen,[J]. China Coal,2018,44(5):105−108. doi: 10.3969/j.issn.1006-530X.2018.05.022
|
[27] |
董国胜. 平煤十二矿岩层下保护层开采技术及工程实践[J]. 能源与环保,2019,41(8):187−196.
DONG Guosheng. Mining technology and engineering practice of protective seam under rock stratum in Pingdingshan No.12 Coal Mine[J]. Energy and Environmental Protection,2019,41(8):187−196.
|
[28] |
汪国华,王高飞,高建成,等. 松动爆破卸压技术在煤炭开采中的应用[J]. 采矿技术,2012,12(3):101−123. doi: 10.3969/j.issn.1671-2900.2012.03.037
WANG Guohua,WANG Gaofei,Gao Jiancheng,et al. Application of loose blasting pressure relief technology in coal mining[J]. Mining Technology,2012,12(3):101−123. doi: 10.3969/j.issn.1671-2900.2012.03.037
|
[29] |
王兆丰. 液态CO2相变致裂二次增透技术[J]. 河南理工大学学报: 自然科学版,2016,35(5):597−600.
WANG Zhaofeng. Secondary anti-reflection technology of liquid CO2 phase transition induced cracking[J]. Journal of Henan Polytechnic University: Natural Science Edition,2016,35(5):597−600.
|
[30] |
张建国,兰天伟,王 满,等. 平顶山矿区深部矿井动力灾害预测方法与应用[J]. 煤炭学报,2019,44(6):1698−1706.
ZHANG Jianguo,LAN Tianwei. WANG Man, Prediction method of deep mining dynamic disasters and its application in Pingdingshan Mining Area[J]. Journal of China Coal Socirty,2019,44(6):1698−1706.
|
[31] |
张国川,刘 枫. 首山一矿地面集中式降温技术与工程实践[J]. 煤炭工程,2020,52(11):94−97.
ZHANG Guochuan,LIU Feng. Centralized surface cooling technology and engineering practice in Shoushan No. 1 Mine[J]. Coal Engineering,2020,52(11):94−97.
|
[32] |
邹明军. 煤矸石充填开采技术在平煤十二矿的应用[J]. 中州煤炭,2012(10):75−76.
ZOU Mingjun. Application of coal gangue backfill mining technology in PingMei No. 12 Mine[J]. Zhongzhou Coal,2012(10):75−76.
|
[33] |
张国川. 加强科技创新打造智能矿山:河南平宝煤业有限公司智能矿山建设成果及经验[J]. 智能矿山,2021,2(1):89−94.
ZHANG Guochuan. Strengthening scientific and technological innovation to build smart mine: achievements and experience of Henan Pingbao Coal Industry Co., Ltd. smart mine construction[J]. Intelligent Mine,2021,2(1):89−94.
|
1. |
杨帆,郭海峰,严怀民,蔡先娈. 煤炭深部开采工艺变化对沉陷规律影响的实测分析. 煤炭科技. 2025(01): 1-6+11 .
![]() | |
2. |
原白云,岳宗耀,高保彬,李兵兵,贾天让. 井工煤矿全生命周期甲烷捕集核算及减排路径. 矿业科学学报. 2024(01): 116-125 .
![]() | |
3. |
张秀东. 地质构造对煤层瓦斯影响分析与安全防治技术研究. 煤炭与化工. 2024(01): 123-126 .
![]() | |
4. |
王小聪,黄再娟. 深部煤层瓦斯吸附规律研究. 煤炭与化工. 2024(03): 119-121+125 .
![]() | |
5. |
王波,马世纪,田志银,任永政,王军,黄万朋,王灵. 不同加载条件下含瓦斯煤岩强度极限邻域范围研究. 煤炭科学技术. 2024(07): 114-125 .
![]() | |
6. |
罗国安. 大型露天灰岩矿爆破粉尘影响评价及控制措施研究. 中国水泥. 2024(08): 76-80+84 .
![]() | |
7. |
兰安畅,李兵兵,王文惠,闫振阳,高保彬,周杰. 基于综合能量指数的煤岩复合动力灾害预警新方法. 煤炭技术. 2024(09): 128-132 .
![]() | |
8. |
李延河,万志军,于振子,师鹏,赵万里,甄正,张源. 高温采煤工作面全风流路径风温及冷负荷预测方法研究. 煤炭工程. 2024(11): 171-175 .
![]() | |
9. |
段淑蕾,李波波,成巧耘,宋浩晟. 应力作用下含水煤岩渗透率及水膜动态演化机制. 煤炭科学技术. 2023(06): 91-100 .
![]() | |
10. |
王广森. 高位定向长钻孔技术在平煤八矿的试验及应用. 内蒙古煤炭经济. 2023(21): 174-176 .
![]() |