Advance Search

SONG Shijie,SUN Tao,ZHENG Beibei,et al. Effect of coal mining subsidence on loess slope morphology and soil erosion in loess gully region of Northern Shaanxi[J]. Coal Science and Technology,2023,51(2):422−435

. DOI: 10.13199/j.cnki.cst.2022-1913
Citation:

SONG Shijie,SUN Tao,ZHENG Beibei,et al. Effect of coal mining subsidence on loess slope morphology and soil erosion in loess gully region of Northern Shaanxi[J]. Coal Science and Technology,2023,51(2):422−435

. DOI: 10.13199/j.cnki.cst.2022-1913

Effect of coal mining subsidence on loess slope morphology and soil erosion in loess gully region of Northern Shaanxi

Funds: 

National Natural Science Foundation of China (41402308); Key R&D Project of Shaanxi Province (2023-YBSF-458); Key Fund Project of Shaanxi Provincial Key Laboratory of Geological Support for Green Coal Development (DZBZ2022Z-03)

More Information
  • Received Date: November 14, 2022
  • Available Online: April 20, 2023
  • How to solve the contradiction between coal mining and soil and water conservation is the key scientific problem to realize the ecological environment protection and high-quality development in the middle reaches of the Yellow River. In this paper, taking the coal mining subsidence area in loess gully of northern Shaanxi as the research object, aiming at the typical geological occurrence characteristics of the main coal seam, and taking the underground mining thickness (9, 7, 5 m), the natural slope shape (straight slope, concave slope, convex slope, compound slope) and slope (5°, 15°, 25°, 35°, 45°) of the surface loess as variables, a total of 60 numerical models are constructed. In this paper, based on FLAC3D numerical simulation software, the evolution process and law of slope morphology under the coupling effect of loess natural slope morphology and mining thickness are studied. Then, based on China soil erosion equation (CSLE model) and empirical model, the soil erosion effect of subsidence slope is calculated and analyzed. The results show that: ① Coal mining subsidence will lead to the increase of the slope of the surface loess slope, and the greater the mining thickness, the greater the slope increase. Significant Amplification Effect of Large Mining Thickness on Slope Gradient Increase of Surface Loess Caused by Coal Mining Subsidence. The concave slope generally has a significant effect on the slope of the subsidence slope, especially under the conditions of “ mining thickness 5 m, natural slope > 5 ° ”, “mining thickness 7 m, arbitrary natural slope ”, “ mining thickness 9 m, natural slope ≤ 35°”. No matter what kind of mining thickness and natural slope shape, the natural slope of ≤ 5 ° has the greatest influence on the increase of subsidence slope. ② Coal mining subsidence will lead to the increase ofM1 on the surface loess slope under the scale of “ annual erosion rainfall ”, and the greater the mining thickness, the greater the increase ofM1. When the mining thickness increases from 5 m to 9 m,M1 increases by about 1 time. The concave slope of four slope shapes has the greatest influence on the increase ofM1 on the subsidence slope. The natural slope of ≤ 15° has a great influence on the increase ofM1, which is more than 20% under the condition of “ mining thickness 9 m, concave slope ”. ③ Coal mining subsidence will lead to the increase ofM2 of surface loess slope under the scale of “ typical erosion rainfall ”, and the greater the mining thickness, the greater the increase ofM2 ; when the mining thickness increases from 5 m to 9 m, the increase ofM2 increases by about 1 times. The concave slope of the four slope shapes has the greatest influence on the increase ofM2 on the subsidence slope. The natural slope of ≤ 15° has a great influence on the increase ofM2, which is more than 17 % under the condition of “ mining thickness 9 m, concave slope ”. The results can provide scientific basis for accurate prevention and control of soil erosion and high-quality development in the mining area of northern Shaanxi and even the middle reaches of the Yellow River Basin.

  • [1]
    胡炳南,郭文砚. 采煤沉陷区损害防治对策与技术发展方向[J]. 煤炭科学技术,2022,50(5):21−29. doi: 10.13199/j.cnki.cst.2022-0330

    HU Bingnan,GUO Wenyan. Counter measures and technical development direction of damage prevention in coal mining subsidence area[J]. Coal Science and Technology,2022,50(5):21−29. doi: 10.13199/j.cnki.cst.2022-0330
    [2]
    王双明. 对我国煤炭主体能源地位与绿色开采的思考[J]. 中国煤炭,2020,46(2):11−16.

    WANG Shuangming. Thoughts about the main energy status of coal and green mining in China[J]. China Coal,2020,46(2):11−16.
    [3]
    谢和平,吴立新,郑德志. 2025年中国能源消费及煤炭需求预测[J]. 煤炭学报,2019,44(7):1949−1960.

    XIE Heping,WU Lixin,ZHENG Dezhi. Prediction on the energy consumption and coal demand of China in 2025[J]. Journal of China Coal Society,2019,44(7):1949−1960.
    [4]
    霍 超,刘天绩,樊 斌,等. 双碳背景下我国煤炭资源勘查开发布局研究[J]. 地质论评,2022,68(3):938−944.

    HUO Chao,LIU Tianji,FAN Bin,et al. Research on exploration and development layout of coal resources in China under the background of dual carbon[J]. Geological Review,2022,68(3):938−944.
    [5]
    申艳军,杨博涵,王双明,等. 黄河几字弯区煤炭基地地质灾害与生态环境典型特征[J]. 煤田地质与勘探,2022,50(6):104−117.

    SHEN Yanjun,YANG Bohan,WANG Shuangming,et al. Typical characteristics of geological hazards and ecological environment of coal base in the bends area of the Yellow River[J]. Coal Geology & Exploration,2022,50(6):104−117.
    [6]
    中华人民共和国水利部.《全国水土保持规划(2015—2030年)》[EB/OL].[2015-10-17] https://zjjcmspublic.oss-cn-hangzhou-zwynet-d01-a.internet.cloud.zj.gov.cn/jcms_files/jcms1/web3028/site/attach/0/0c6431739da74720b72f012933522207.pdf
    [7]
    王双明,杜 麟,宋世杰. 黄河流域陕北煤矿区采动地裂缝对土壤可蚀性的影响[J]. 煤炭学报,2021,46(9):3027−3038.

    WANG Shuangming,DU Lin,SONG Shijie. Influence of mining ground fissures on soil erodibility in Northern Shanxi coal mining area of Yellow River Basin[J]. Journal of China Coal Society,2021,46(9):3027−3038.
    [8]
    宋世杰,杜 麟,王双明,等. 陕北采煤沉陷区不同沉陷年限黄土坡面土壤可蚀性的变化规律[J]. 煤炭科学技术,2022,50(2):289−299.

    SONG Shijie,DU Lin,WANG Shuangming,et al. Variation of soil erodibility on Loess Slope under various subsidence years in coal mining subsidence area located Northern Shaanxi[J]. Coal Science and Technology,2022,50(2):289−299.
    [9]
    习近平. 在黄河流域生态保护和高质量发展座谈会上的讲话[J]. 当代广西,2019(20):11−13.

    XI Jinping. Speech at the symposium on ecological protection and high-quality development of the yellow river basin[J]. Contemporary Guangxi,2019(20):11−13.
    [10]
    余学义,郭文彬,赵兵朝,等. 厚黄土层煤层开采沉陷规律研究[J]. 煤炭科学技术,2015,43(7):6−10,24. doi: 10.13199/j.cnki.cst.2015.07.002

    YU Xueyi,GUO Wenbin,ZHAO Bingchao,et al. Study on mining subsidence law of coal seam with thick overlying loess stratum[J]. Coal Science and Technology,2015,43(7):6−10,24. doi: 10.13199/j.cnki.cst.2015.07.002
    [11]
    张志鹏,余 洋,孙 伟,等. 黄土节理力学性质对地表开采沉陷的影响研究[J]. 金属矿山,2017(8):181−187.

    ZHANG Zhipeng,YU Yang,SUN Wei,et al. Research in mechanical parameters of the loess joints under the condition of mining subsidence[J]. Metal Mine,2017(8):181−187.
    [12]
    汤伏全,乔德京,张 健. 黄土覆盖矿区黄土层湿陷性对开采沉陷的影响研究[J]. 煤炭工程,2015,47(6):88−90,94.

    TANG Fuquan,QIAO Dejing,ZHANG Jian. Influence of collapsible loess layer on mining subsidence in loess covered mining area[J]. Coal Engineering,2015,47(6):88−90,94.
    [13]
    岳应利. 黄土高原西部黄土工程物理性质及其成因[J]. 中国沙漠,2004,24(6):20−24. doi: 10.3321/j.issn:1000-694X.2004.06.003

    YUE Yingli. Physical properties and causes of loess engineering in the western part of the Loess Plateau[J]. Journal of Deseert Research,2004,24(6):20−24. doi: 10.3321/j.issn:1000-694X.2004.06.003
    [14]
    宋世杰,赵晓光,王双明,等. 覆岩岩土比对开采沉陷的影响分析与数值模拟[J]. 中国煤炭,2015,41(6):63−67.

    SONG Shijie,ZHAO Xiaoguang,WANG Shuangming,et al. Analysis and numerical simulation on the influence of the overlying strata’s rock-soil ratio on the mining subsidence[J]. China Coal,2015,41(6):63−67.
    [15]
    汤伏全. 西部厚黄土层矿区开采沉陷预计模型[J]. 煤炭学报,2011,36(S1):74−78.

    TANG Fuquan. Prediction model of mining subsidence in western thick loess mining area[J]. Journal of China Coal Society,2011,36(S1):74−78.
    [16]
    郭文兵,黄成飞,陈俊杰. 厚湿陷黄土层下综放开采动态地表移动特征[J]. 煤炭学报,2010,35(S1):38−43.

    GUO Wenbing,HUANG Chengfei,CHEN Junjie. Dynamic surface movement characteristics of fully mechanized caving mining under thick collapsible loess layer[J]. Journal of China Coal Society,2010,35(S1):38−43.
    [17]
    孙 浩. 不同含水率湿陷性黄土下开采地表移动变形规律研究[D]. 西安: 西安科技大学, 2021.

    SUN Hao. Study on surface movement and deformation law of mining under collapsible loess with different water content [D]. Xi’an : Xi’an University of Science and Technology, 2021.
    [18]
    赵兵朝,孙 浩,郭亚欣,等. 湿陷性黄土覆盖区煤层开采地表裂缝发育规律研究[J]. 矿业研究与开发,2021,41(6):105−110.

    ZHAO Bingchao,SUN Hao,GUO Yaxin,et al. Study on the development law of surface fractures in coal seam mining in collapsible loess coverage area[J]. Mining Research and Development,2021,41(6):105−110.
    [19]
    宋世杰,赵晓光,张 勇,等. 井下采煤影响矿区坡面形态及侵蚀的数值模拟分析[J]. 安全与环境学报,2016,16(4):368−373.

    SONG Shijie,ZHAO Xiaoguang,ZHANG Yong,et al. Numerical simulation analysis on the influence of underground coal mining on slope shape and erosion of mining area[J]. Journal of Safety and Environment,2016,16(4):368−373.
    [20]
    柳 宁,赵晓光,周文富,等. 井工煤矿开采对坡面形态及侵蚀的影响研究[J]. 煤炭工程,2020,52(3):122−126.

    LIU Ning,ZHAO Xiaoguang,ZHOU Wenfu,et al. Study on the influence of coal mining on slope morphology and erosion[J]. Coal Engineering,2020,52(3):122−126.
    [21]
    李斯佳,王金满,万德鹏,等. 采煤沉陷地微地形改造及其应用研究进展[J]. 生态学杂志,2018,37(6):1612−1619.

    LI Sijia,WANG Jinman,WAN Depeng,et al. Research progress in microtopography transformation and application of coal mining subsidence[J]. Journal of Ecology,2018,37(6):1612−1619.
    [22]
    石若莹,朱清科,李依璇,等. 陕北黄土区坡面微地形与群落数量特征的关系[J]. 中国水土保持科学(中英文),2021,19(3):1−7.

    SHI Ruoying,ZHU Qingke,LI Yixuan,et al. The relationship between slope microtopography and quantitative characteristics of communities in the loess region of northern Shaanxi[J]. Science of Water and Soil Conservation in China (English and Chinese),2021,19(3):1−7.
    [23]
    陕西省地质调查院, 陕北煤炭开采区采动损害调查报告[R/OL]. (2018-05-23)[2022-11-15]. http://www.sxsgs.com/site/sxsgs/jcdz/info/2018/18052.html.
    [24]
    赵春虎,靳德武,李智学,等. 陕北榆神矿区煤层开采顶板涌水规律分析[J]. 煤炭学报,2021,46(2):523−533.

    ZHAO Chunhu,JIN Dewu,LI Zhixue,et al. Analysis of overlying aquifer water inrush above mining seam in Yushen mining area[J]. Journal of China Coal Society,2021,46(2):523−533.
    [25]
    王双明, 黄庆享, 范立民, 等. 生态脆弱区煤炭开发与生态水位保护[ M]. 北京: 科学出版社, 2010.

    WANG Shuangming, HUANG Qingxiang, FAN Limin, et al. Coalmining and ecological water level protection in ecologically fragileareas[M]. Beijing: Science Press , 2010.
    [26]
    王双明,魏江波,宋世杰,等. 黄土沟谷区浅埋煤层开采覆岩破坏与地表损伤特征研究[J]. 煤炭科学技术,2022,50(5):1−9. doi: 10.13199/j.cnki.cst.2022-0389

    WANG Shuangming,WEI Jiangbo,SONG Shijie,et al. Study on overburden and surface damage characteristics of shallow-buried coal seam mining in loess gully area[J]. Coal Science and Technology,2022,50(5):1−9. doi: 10.13199/j.cnki.cst.2022-0389
    [27]
    胡 琳,苏 静,桑永枝,等. 陕西省降雨侵蚀力时空分布特征[J]. 干旱区地理,2014,37(6):1101−1107.

    HU Lin,SU Jing,SANG Yongzhi,et al. Spatio-temporal distribution characteristics of rainfall erosion in Shaanxi Province[J]. Arid Land Geography,2014,37(6):1101−1107.
    [28]
    李 奎,岳大鹏,刘 鹏,等. 基于GIS与RUSLE的榆林市土壤侵蚀空间分布研究[J]. 水土保持通报,2014,34(6):172−178, 371.

    LI Kui,YUE Dapeng,LIU Peng,et al. Spatial distribution of soil erosion analyzed based on GIS and RUSLE in Yulin city[J]. Bulletin of Soil and Water Conservation,2014,34(6):172−178, 371.
    [29]
    王双明,黄庆享,范立民,等. 生态脆弱矿区含(隔)水层特征及保水开采分区研究[J]. 煤炭学报,2010,35(1):7−14.

    WANG Shuangming,HUANG Qingxiang,FAN Limin,et al. Study on the characteristics of aquifers (aquifers) and water conservation mining zoning in ecologically fragile mining areas[J]. Journal of China Coal Society,2010,35(1):7−14.
    [30]
    宋世杰, 张艳杰, 张 勇, 等. 黄河中游典型煤矿区开采沉陷对地表坡面形态的影响及其水土流失效应 [M]. 北京: 地质出版社, 2020.

    SONG Shijie, ZHANG Yanjie, ZHANG Yong, et al. Influence of mining subsidence on surface slope morphology and its effect on water and soil loss in typical coal mining areas in the middle reaches of the Yellow River [M]. Beijing: Geological Publishing House, 2020.
    [31]
    杨俊哲,雷少刚. 工作面开采强度对RUSLE坡度坡长因子的影响规律[J]. 煤炭科学技术,2021,49(1):192−197. doi: 10.13199/j.cnki.cst.2021.01.014

    YANG Junzhe,LEI Shaogang. The influence law of mining intensity on RUSLE slope and length factor[J]. Coal Science and Technology,2021,49(1):192−197. doi: 10.13199/j.cnki.cst.2021.01.014
    [32]
    张新和,郑粉莉,张 鹏,等. 黄土坡面侵蚀方式演变过程中汇水坡长的侵蚀产沙作用分析[J]. 干旱地区农业研究,2007(6):126−131.

    ZHANG Xinhe,ZHENG Fenli,ZHANG Peng,et al. Analysis of erosion and sediment yield of catchment slope length during the evolution of loess slope erosion mode[J]. Agricultural Research in Arid Areas,2007(6):126−131.
    [33]
    朱显谟. 黄土高原水蚀的主要类型及其有关因素[J]. 水土保持通报,1982(3):40−44.

    ZHU Xianmo. Main types and related factors of water erosion on the loess plateau[J]. Water and Soil Conservation Bulletin,1982(3):40−44.
    [34]
    刘 冉,余新晓,蔡强国,等. 坡长对坡面侵蚀、搬运、沉积过程影响的研究进展[J]. 中国水土保持科学(中英文),2020,18(6):140−146.

    LIU Ran,YU Xinxiao,CAI Qiangguo,et al. Research progress on the effect of slope length on slope erosion, transportation and sedimentation[J]. Science of Soil and Water Conservation in China (English and Chinese),2020,18(6):140−146.
    [35]
    WIS-CHMEIER W H, SMITH D D. Pewdicting rainfall erosion losses from cropland east of the Rocky Mountains: A guide for soil and water conservation planning [M]. Department of Agriculture, Science and Education Administration, 1978.
    [36]
    RENARD K G, FOSTER G R, WEESIES G A, et al. Predicting rainfall erosion by water : A guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE) [M]. United States Government Printing, 1997.
    [37]
    刘宝元,郭索彦,李智广,等. 中国水力侵蚀抽样调查[J]. 中国水土保持,2013(10):26−34. doi: 10.14123/j.cnki.swcc.2013.10.010

    LIU Baoyuan,GUO Suoyan,LI Zhiguang,et al. Sample survey of hydraulic erosion in China[J]. Soil and water conservation in China,2013(10):26−34. doi: 10.14123/j.cnki.swcc.2013.10.010
    [38]
    LIU B Y, ZHANG K L, XIE Y. An empirical soil loss equation [C]. ISCO Pot . Beijing : Tsinghua Press, 2022: 143−139.
    [39]
    苏新宇,吴镇宇,刘 霞,等. 基于CSLE模型的区域水土流失风险分析[J]. 中国水土保持科学(中英文),2021,19(5):27−36.

    SU Xinyu,WU Zhenyu,LIU Xia,et al. Regional soil erosion risk analysis based on CSLE model[J]. Science of Soil and Water Conservation in China,2021,19(5):27−36.
    [40]
    廖元群,廖富强,万小星,等. 山区地形因子尺度依赖性及其对水土流失评价的影响研究: 以江西省崇义县为例[J]. 中国水土保持,2021(10):51−55,5.

    LIAO Yuanqun,LIAO Fuqiang,WAN Xiaoxing,et al. Scale-dependence of mountain topographic factors and its impact on soil and water loss evaluation[J]. Soil and Water Conservation in China,2021(10):51−55,5.
    [41]
    王丽云,王小燕,王 义,等. 神东矿区2005—2018年水土流失动态变化研究[J]. 中国水土保持,2021(1):60−62.

    WANG Liyun,WANG Xiaoyan,WANG Yi,et al. Study on the dynamic changes of soil erosion in Shendong mining area from 2005 to 2018[J]. China Soil and Water Conservation,2021(1):60−62.
    [42]
    WILLIAMS J R,ARNOLD J G. A System of Erosion-Sediment Yield Models[J]. Soil Technology,1997,11(1):43−45. doi: 10.1016/S0933-3630(96)00114-6
    [43]
    DESMET P J J,GOVERS G. A GIS procedure for automatically caalculating the USLE LS factor on topographically complex landscape units[J]. Journal of Soil and Water Conservation,1996,51(5):427−433.
    [44]
    MCCOOI D K, FOSTER G R, WEESIES G A. Slope length and steepness factors (LS), Chapter [M]. Washington: United States Department of Agriculture, 1997: 101−104.
    [45]
    LIU B Y,NEARING M A,RISSE L M. Slope gradient effects on soil loss for steep slopes[J]. Transactions of the ASAE,1994,37(5):1835−1840.
    [46]
    蔡崇法,丁树文,史志华,等. 应用USLE模型与地理信息系统IDRISI预测小流域土壤侵蚀量的研究[J]. 水土保持学报,2000,14(2):19−24. doi: 10.13870/j.cnki.stbcxb.2000.02.005

    CAI Chongfa,DING Shuwen,SHI Zhihua,et al. Study of applying USLE and geographical information system IDRISI to predict soil erosion in small watershed[J]. Journal of Soil and Water Conservation,2000,14(2):19−24. doi: 10.13870/j.cnki.stbcxb.2000.02.005
    [47]
    吴启发, 赵晓光, 刘秉正, 等. 缓坡耕地侵蚀环境及动力机制分析[M]. 西安: 陕西科学出版社, 2000.
    [48]
    赵 令,苏 涛,李杰卫,等. 采煤沉陷区地表水土流失时空演化研究[J]. 煤矿安全,2019,50(4):37−40. doi: 10.13347/j.cnki.mkaq.2019.04.009

    ZHAO Ling,SU Tao,LI Jiewei,et al. Temporal and spatial evolution of surface soil erosion in mining subsidence areas[J]. Safety in Coal Mines,2019,50(4):37−40. doi: 10.13347/j.cnki.mkaq.2019.04.009
    [49]
    郑慧慧,秦佳星,桑之婷. 基于区域特征的煤炭开采沉陷对土壤特性影响研究进展[J]. 土壤通报,2022,53(6):1481−1491.

    ZHENG Huihui,QIN Jiaxing,SANG Zhiting,et al. Progress review on the influence of coal mining subsidence on soil properties based on regional characteristics[J]. Chinese Journal of Soil Science,2022,53(6):1481−1491.
    [50]
    白玉川,张慧茜,张金良. 晋西北典型黄土陡坡急流冲刷调查研究[J]. 水利水电技术,2020,51(7):186−200.

    BAI Yuchuan,ZHANG Huixi,ZHANG Jinliang. Investigation of typical torrential erosion on steep loess slope in Northwest Shanxi[J]. Water Resources and Hydropower Engineering,2020,51(7):186−200.
    [51]
    王惠泽. 榆神府矿区水土流失防治模式仿真研究[D]. 西安: 陕西师范大学, 2017.

    WANG Huize. Simulation Study on soil and water loss prevention and control model in Yushenfu Mining Area [D]. Xi’an: Shaanxi Normal University, 2017.
    [52]
    徐树媛,张永波,时 红,等. 采空区冒落带内破碎岩体的渗流特征与渗透性试验研究[J]. 安全与环境工程,2022,29(1):128−134.

    XU Shuyuan,ZHANG Yongbo,SHI Hong,et al. Flow characteristics and experimental study on the permeability of mining-induced fractured rock mass in caving zones[J]. Safety and Environmental Engineering,2022,29(1):128−134.
  • Related Articles

    [1]LIU Guangwei, HUANG Yunlong, CAO Bo, YAO Yong. Dynamic control of working slope shape and optimization of advance speed in seasonally stripped open-pit coal mine[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(10): 45-54. DOI: 10.13199/j.cnki.cst.2023-0621
    [2]ZHANG Yu, LIU Yu, YANG Yang, YANG Guohua, LYU Wenwei, LI Guanghe. Open-pit mine slope optimization with the morphology and spatial support effect[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(4): 66-71. DOI: 10.13199/j.cnki.cst.2021-0781
    [3]SONG Shijie, DU Lin, WANG Shuangming, SUN Tao. Variation of soil erodibility on loess slope under various subsidence years in coal mining subsidence area located Northern Shaanxi[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(2): 289-299.
    [4]LI Meijie. Analysis of deformation mechanism of soft rock composite slope in open-pit mine[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(8): 108-113.
    [5]TIAN Yu, ZHANG Bo, LIU Bowen, WANG Zhenwei, WEI Zhen, YAN Jie. Study on deformation mechanism and shape optimization of multi-weak interlayer slope in open-pit mine[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(6): 189-194.
    [6]YANG Junzhe, LEI Shaogang. The influence law of mining intensity on RUSLE slope and length factor[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(1): 192-197. DOI: 10.13199/j.cnki.cst.2021.01.014
    [7]CAO Lanzhu, HUANG Haoxuan, WANG Dong, WANG Zhen. Research on slope stability of coal recovery on landslide area underlying southern slope in Shengli No.2 East Open-pit Mine[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (10).
    [8]CAO Lanzhu, LI Guanghe, WANG Dong, Guang Yimeng. Optimization on spatial morphology slope of in pit dumping site at inclinedweak-basement of surface mine[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (2).
    [9]Cao Lanzhu Liu Shuai Gao Feng Wang Dong Wang Zhen Hu Fuguo, . Optimization on spatial form of composite seam slope in surface mine[J]. COAL SCIENCE AND TECHNOLOGY, 2017, (6).
    [10]Cao Lanzhu Wang Zhen Wang Dong Song Ziling, . Study on stability of reversed inclined soft rock slope at end slope of surface mine[J]. COAL SCIENCE AND TECHNOLOGY, 2017, (3).
  • Cited by

    Periodical cited type(8)

    1. 宋世杰, 成星, 白莉, 刘露, 李源红, 张家杰, 陈宝灯. 黄河中游陕北煤矿区黄土沉陷坡面土壤入渗特性变化规律及其侵蚀效应. 西北大学学报(自然科学版). 2025(03)
    2. 王新雷,刘双峰. 黄土干湿循环作用下力学特性研究. 价值工程. 2025(14): 44-46 .
    3. 宋世杰,彭芮思,左靖,刘露,陈宝灯. 陕北煤矿区采动地裂缝对土壤抗蚀性的影响规律研究. 煤炭科学技术. 2024(02): 378-393 . 本站查看
    4. 贾路,李占斌,于坤霞,李鹏,徐国策,丛佩娟,李斌斌. 基于径流侵蚀功率的长江典型流域能沙关系模型及改进. 农业工程学报. 2024(05): 128-140 .
    5. 宋世杰,张家杰,杨帅,刘志坚,江宁,陈平,刘汉斌,魏江波,刘露,陈宝灯,李源红. 黄河上中游采煤沉陷区水土流失效应的探索与思考. 绿色矿山. 2024(02): 169-182 .
    6. 宋世杰,冯泽煦,孙涛,郑贝贝,魏江波. 陕北采煤沉陷区黄土坡面形变与土壤侵蚀效应. 西安科技大学学报. 2023(02): 301-311 .
    7. 赵茜茜,赵永华. 秦岭地区土壤侵蚀时空间格局分析研究. 农业与技术. 2023(21): 103-106 .
    8. 宋世杰,王艺,彭芮思,张玉玲,唐利君,程霞. 陕北不同地貌类型区采煤沉陷对土壤微生物和酶活性的影响. 煤炭科学技术. 2023(12): 110-124 . 本站查看

    Other cited types(6)

Catalog

    Article views (111) PDF downloads (35) Cited by(14)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return