LIU Peng,GONG Li,MA Hongwei,et al. Pick-and-place trajectory tracking control for cable-driven gangue sorting robots[J]. Coal Science and Technology,2023,51(10):280−290
. DOI: 10.13199/j.cnki.cst.2022-1898Citation: |
LIU Peng,GONG Li,MA Hongwei,et al. Pick-and-place trajectory tracking control for cable-driven gangue sorting robots[J]. Coal Science and Technology,2023,51(10):280−290 . DOI: 10.13199/j.cnki.cst.2022-1898 |
The cable-driven parallel robots have the advantages of fast moving speed, large workspace and strong dynamic load carrying capacity, so they are employed to perform the pick-and-place operation of the target gangues quickly and accurately. However, due to the flexibility and the unidirectional characteristics of the cables, the cables must be kept in tension all the time, which makes the control of the robots face great challenges. At the same time, the dynamic impact, uncertainty of dynamic parameters, external interference and other factors caused by the process of the pick-and-place the target gangues will inevitably affect the motion accuracy of the end-grab of the robot, and even lead to the failure of the sorting of target gangues. Therefore, a robust adaptive fuzzy control strategy, which can ensure the motion accuracy of the end-grab of the cable-driven gangue sorting robots, is presented to overcome the disturbances of dynamic parameters and the influences of external interference in the process of picking and placing the gangues. Based on Lyapunov stability theory, the stability of the proposed control strategy is proved. The simulation analysis of the proposed control strategy is carried out through a spatial spiral trajectory and practical pick-and-place trajectory for the robot. The results show that the end-grab of the robot has a good tracking effect on the predetermined trajectory, and the maximum position tracking error and root mean square error are 2×10−2 m and 8.9867×10−4 m, respectively; and furthermore, the cable tensions are smooth and continuous, which satisfies the constraint conditions of the cable tensions. It is proved that the proposed robust adaptive fuzzy control strategy in this paper is effective and reliable for the trajectory tracking control of the cable-driven gangue sorting robots. This study can lay a good theoretical foundation for the further application of the cable-driven gangue sorting robots.
[1] |
葛世荣,胡而已,裴文良. 煤矿机器人体系及关键技术[J]. 煤炭学报,2020,45(1):455−463. doi: 10.13225/j.cnki.jccs.YG19.1478
GE Shirong,HU Eryi,PEI Wenliang. Classification system and key technology of coal mine robot[J]. Journal of China Coal Society,2020,45(1):455−463. doi: 10.13225/j.cnki.jccs.YG19.1478
|
[2] |
曹现刚,刘思颖,王 鹏,等. 面向煤矸分拣机器人的煤矸识别定位系统研究[J]. 煤炭科学技术,2022,50(1):237−246.
CAO Xiangang,LIU Siying,WANG Peng. Research on coal gangue identification and positioning system based on coal-gangue sorting robot[J]. Coal Science and Technology,2022,50(1):237−246.
|
[3] |
WANG X G,PENG M J,HU Z H,et al. Feasibility investigation of large-scale model suspended by cable-driven parallel robot in hypersonic wind tunnel test[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering,2017,231(13):2375−2383. doi: 10.1177/0954410016662067
|
[4] |
SUN J H,LI H,ZHU W B. Practical Damping Identification of FAST Cable Suspension[J]. Advances in Mechanical Engineering,2014,6:129−148.
|
[5] |
BARNETT E,and GOSSELIN C. Large-scale 3D printing with a cable-suspended robot[J]. Additive Manufacturing,2015,7:27−44. doi: 10.1016/j.addma.2015.05.001
|
[6] |
苏 宇,仇原鹰,王 龙. 高速绳牵引并联摄像机器人冗余驱动力优化求解[J]. 西安电子科技大学学报,2014,41(2):90−96.
SU Yu,QIU Yuanying,WANG Long. Optimization of redundant driving force for high-speed cable-driven parallel camera robots[J]. Journal of Xidian University,2014,41(2):90−96.
|
[7] |
刘 鹏,马宏伟,乔心州,等. 柔索驱动拣矸机器人最小索拉力等值曲面研究[J]. 西安科技大学学报,2020,40(5):797−804. doi: 10.13800/j.cnki.xakjdxxb.2020.0507
LIU Peng,MA Hongwei,QIAO Xinzhou,et al. On the contour surfaces of minimum tensions for a cable-driven coal-gangue picking robot[J]. Journal of xi’an university of science and technology,2020,40(5):797−804. doi: 10.13800/j.cnki.xakjdxxb.2020.0507
|
[8] |
LIU P,CAO X G,ZHANG X H,et al. Equivalent Position Workspace for a Coal Gangue Picking Robot and Its Application to Stability Analysis: A Descriptive Study[J]. New Trends in Physical Science Research,2022(4):115−124.
|
[9] |
LIU P,QIAO X Z,ZHANG X H. Stability sensitivity for a cable-based coal–gangue picking robot based on grey relational analysis[J]. International Journal of Advanced Robotic Systems,2021(11):1−12.
|
[10] |
KHOSRAVI M A,TAGHIRAD H D. Robust PID control of fully-constrained cable driven parallel robots[J]. Mechatronics,2014,24(2):87−97. doi: 10.1016/j.mechatronics.2013.12.001
|
[11] |
KAWAMURA S,KINO H,WON C. High-speed manipulation by using parallel wire-driven robots[J]. Robotica,2000,18(1):13−21. doi: 10.1017/S0263574799002477
|
[12] |
KORAYEM M H,TOURAJIZADEH H,ZEHFROOSH A,et al. Optimal path planning of a cable-suspended robot with moving boundary using optimal feedback linearization approach[J]. Nonlinear Dynamics,2014,78(2):1515−1543. doi: 10.1007/s11071-014-1532-9
|
[13] |
LEE J,CHANG P H,JIN M. Adaptive integral sliding mode control with time-delay estimation for robot manipulators[J]. IEEE Transactions on Industrial Electronics,2017,64(8):6796−6804. doi: 10.1109/TIE.2017.2698416
|
[14] |
BABAGHASABHA R,KHOSRAVI M A,TAGHIRAD H D. Adaptive robust control of fully-constrained cable driven parallel robots[J]. Mechatronics,2015,25:27−36. doi: 10.1016/j.mechatronics.2014.11.005
|
[15] |
BAHRAMI V,KALHOR A,MASOULEH M T. Dynamic Model Estimating and Designing Controller for the 2-DoF Planar Robot in Interaction with Cable-driven Robot Based on Adaptive Neural Network[J]. Journal of Intelligent & Fuzzy Systems,2021,41(1):1261−1280.
|
[16] |
JIANG S,WANG Y,JU F,et al. A new fuzzy time-delay control for cable-driven robot[J]. International Journal of Advanced Robotic Systems,2019(3):1−10.
|
[17] |
OYMAN E L,KORKUT M Y,YLMAZ C,et al. Design and control of a cable-driven rehabilitation robot for upper and lower limbs[J]. Robotica,2022,40(1):1−37. doi: 10.1017/S0263574721000357
|
[18] |
KHALILPOUR S A,KHORRAMBAKHT R,DAMIRCHI H,et al. Tip-trajectory tracking control of a deployable cable-driven robot via output redefinition[J]. Multibody System Dynamics,2021(52):31−58.
|
[19] |
YANG Q Q,XIE C L,TANG R R,et al. Hybrid Active Control With Human Intention Detection of an Upper-Limb Cable-Driven Rehabilitation Robot[J]. IEEE Access,2020(8):195206−195215. doi: 10.1109/ACCESS.2020.3033301
|
[20] |
ZI B. Fuzzy Control System Design and Analysis for Completely Restrained Cable-Driven Manipulators[M]. Fuzzy Logic: Controls, Concepts, Theories and Applications, edited by Elmer Dadios. London: IntechOpen, 2012.
|
[21] |
KUMAR A A,ANTOINE J F,ABBA G. Control of an Underactuated 4 Cable-Driven Parallel Robot using Modified Input-Output Feedback Linearization[J]. IFAC-PapersOnLine,2020,53(2):8777−8782. doi: 10.1016/j.ifacol.2020.12.1380
|
[22] |
张立勋,李来禄,姜锡泽,等. 柔索驱动的宇航员深蹲训练机器人力控与实验研究[J]. 机器人,2017,39(5):733−741. doi: 10.13973/j.cnki.robot.2017.0733
ZHANG Lixun,LI Lailu,JIANG Xize,et al. Force Control and Experimental Study of a Cable-Driven Robot for Astronaut Deep Squat Training[J]. ROBOT,2017,39(5):733−741. doi: 10.13973/j.cnki.robot.2017.0733
|
[23] |
SEYFI N S,KEYMASI KHALAJI A. Robust control of a cable-driven rehabilitation robot for lower and upper limbs[J]. ISA Transactions,2022,125:268−289. doi: 10.1016/j.isatra.2021.07.016
|
[24] |
SEYFI N S,KEYMASI KHALAJI A. Robust Lyapunov-based motion control of a redundant upper limb cable-driven rehabilitation robot[J]. Robotica,2022:1−23.
|
[25] |
SHANG W W,ZHANG B,CONG S,et al. Dual-space adaptive synchronization control of redundantly-actuated cable-driven parallel robots[J]. Mechanism and Machine Theory,2020,152:103954.
|
[26] |
JI H,SHANG W W,CONG S. Adaptive synchronization control of cable-driven parallel robots with uncertain kinematics and dynamics[J]. IEEE Transactions on Industrial Electronics,2021,68(9):8444−8454. doi: 10.1109/TIE.2020.3013776
|
[27] |
KORAYEM M H,YOUSEFZADEH M,MANTEGHI S. Dynamics and input–output feedback linearization control of a wheeled mobile cable-driven parallel robot[J]. Multibody System Dynamics,2017,40:55−73. doi: 10.1007/s11044-016-9543-6
|
[28] |
DU P H,PAN Y N,LI H Y,et al. Nonsingular finite-time event-triggered fuzzy control for large-scale nonlinear systems[J]. IEEE Transactions on Fuzzy Systems,2021,29(8):2088−2099. doi: 10.1109/TFUZZ.2020.2992632
|
[29] |
WANG N,ER M J,SUN J,et al. Adaptive Robust Online Constructive Fuzzy Control of a Complex Surface Vehicle System[J]. IEEE Transactions on Cybernetics,2016,46,(7):1511−1523. doi: 10.1109/TCYB.2015.2451116
|
[30] |
WANG S S,FU M Y,WANG Y H,et al. Adaptive online constructive fuzzy tracking control for unmanned surface vessel with unknown time-varying uncertainties[J]. IEEE Access,2018,6:70444−70455. doi: 10.1109/ACCESS.2018.2881134
|
[31] |
乔心州, 龚莉, 刘鹏. 柔索驱动拣矸机器人抓取轨迹规划研究[J/OL]. 机械科学与技术. [2022-11-14].https://doi.org/10.13433/j.cnki.1003-8728.20220158.
QIAO Xinzhou, GONG Li, LIU Peng. On the trajectory planning for a cable-driven gangue sorting robot[J/OL]. Mechanical Science and Technology for Aerospace Engineering. [2022-11-14].https://doi.org/10.13433/j.cnki.1003-8728.20220158.
|
[32] |
LIU P,QIU Y Y,SU Y,et al. On the minimum cable tensions for the cable-based parallel robots[J]. Journal of Applied Mathematics,2014,350492:1−8.
|
[33] |
刘 欣. 两种并联机器人的机构性能分析与运动控制研究[D]. 西安: 西安电子科技大学, 2009: 129-132.
LIU Xin. On the mechanism performance analysis and motion control of the two types of parallel manipulators[D]. Xi’an: Xidian University, 2009: 129-132.
|
[34] |
CHEN Y,MA G Y,LIN S X,et al. Adaptive fuzzy computed-torque control for robot manipulator with uncertain dynamics[J]. International Journal of Advanced Robotic Systems,2012,9:237. doi: 10.5772/54643
|
[35] |
ZHOU Q,WANG L J,WU C W,et al. Adaptive fuzzy control for nonstrict-feedback systems with input saturation and output constraint[J]. IEEE Transactions on Systems, Man, and Cybenetics:Systems,2017,47(1):1−12. doi: 10.1109/TSMC.2016.2557222
|