ZHANG Haiqin,BAO Yixiang,TANG Jiawei,et al. Study on fluoride leaching regularity of natural minerals in Shendong Mining Area[J]. Coal Science and Technology,2023,51(2):436−448
. DOI: 10.13199/j.cnki.cst.2022-1834Citation: |
ZHANG Haiqin,BAO Yixiang,TANG Jiawei,et al. Study on fluoride leaching regularity of natural minerals in Shendong Mining Area[J]. Coal Science and Technology,2023,51(2):436−448 . DOI: 10.13199/j.cnki.cst.2022-1834 |
As coal mining is shifted to the deep in Shendong mining area and fluorine concentration in mine water is increasing, it is of great significance to study the main sources of fluoride for the control of fluoride pollution in mine water. In order to further prove that natural fluorine-containing minerals are the main source of fluorine in mine water, it is necessary to deeply understand the leaching process of natural fluorine-containing minerals in mine water.Take the Shendong mining Area as an example, the water quality change law of mine water at different depths was analyzed, the fluoride content change of rock mining areas at different depths was studied, and the fluoride leaching regularity of natural fluorine-containing minerals in mine water was discussed. The results show that the fluoride concentration in the mine water exceeds the standard value of class III fluoride on the surface, and the proportion of fluorine-containing minerals in natural minerals increases,when the coal mining depth is more than 120 m. Through analyzing the anion and cation components of the mine water, it is believed that the fluoride in the mine water mainly comes from the leaching of fluorine-containing minerals in deep coal mining. Further study on the leaching law of fluorine-containing minerals under different water rock interaction conditions shows that the leaching of fluoride in fluorine-containing minerals can be accelerated by increasing the strength of water rock interaction; When the rock water ratio was increased (more than 1∶50), the fluoride leaching concentration of some fluorine-containing minerals was greater than 1.0 mg/L; Especially under acidic or alkaline conditions, the insoluble fluorides in fluorine-containing minerals were dissolved due to ion exchange and leaching equilibrium mechanism.To sum up, the high fluoride (more than 1.0 mg/L) in mine water was caused by fluoride leaching, because fluoride in natural fluorine-containing minerals is dissolved out under certain water rock interaction conditions. It is an important guidance to accurately control the fluoride leaching of natural minerals under complex geological conditions.
[1] |
MOHAMED Amine Kerdoun,SABAH Mekhlouf,et al. Fluoride concentrations in drinking water and health risk assessment in the south of Algeria[J]. Regulatory Toxicology and Pharmacology,2022,128:105086. doi: 10.1016/j.yrtph.2021.105086
|
[2] |
ONIPE T,EDOKPAYI J N,et al.A review on the potential sources and health implications of fluoride in groundwater of Sub-Saharan Africa[J]. Journal of Environmental Science and Health, Part A,2022,55(9):1078−1093.
|
[3] |
Rajesh Nagarathnam. Techniques galore: how to select the best one to detoxify contaminants?[J] . ACS EST Water, 2021, 1: 11−12.
|
[4] |
刘 航,彭 稳,陆继长,等. 吸附法处理含氟水体的研究进展[J]. 水处理技术,2017,43(9):13−18.
LIU Hang,PENG Wen,LU Jichang,et al. Research progress of fluoride containing wastewater treatment by adsorption method[J]. Technology of Water Treatment,2017,43(9):13−18.
|
[5] |
HAN Jianlin,KISS Loránd,et al. Chemical aspects of human and environmental overload with fluorine[J]. Chem. Rev.,2021,121:4678−4742.
|
[6] |
ZHANG Zheng,LI Guoqing,SU Xianbo,et al. Geochemical controls on the enrichment of fluoride in the mine water of the Shendong mining area, China[J]. Chemosphere,2021,284:131388. doi: 10.1016/j.chemosphere.2021.131388
|
[7] |
郝春明,张 伟,何瑞敏,等. 神东矿区高氟矿井水分布特征及形成机制[J]. 煤炭学报,2021,46(6):1966−1977.
HAO Chunming,ZHANG Wei,HE Ruimin,et al.Formation mechanisms for elevated fluoride in the mine water in Shendong coal-mining district[J]. Journal of China Coal Society,2021,46(6):1966−1977.
|
[8] |
王东升. 煤矿矿井水处理技术应用现状及前景分析[J]. 煤质技术,2021,36(3):30−34.
WANG Dongsheng. Application status and prospect analysis of coal mine water treatment technology[J]. Coal Quality Technology,2021,36(3):30−34.
|
[9] |
顾大钊,李井峰,曹志国,等. 我国煤矿矿井水保护利用发展战略与工程科技[J]. 煤炭学报,2021,46(10):3079−3089.
GU Dazhao,LI Jingfeng,CAO Zhiguo,et al. Technology and engineering development strategy of water protection and utilization of coal mine in China[J]. Journal of China Coal Society,2021,46(10):3079−3089.
|
[10] |
杨桂磊,徐旭峰,徐志远,等. 含氟矿井水除浊除氟处理试验研究[J]. 能源环境保护,2022,36(1):66−71.
YANG Guilei,XU Xufeng,XU Zhiyuan,et al. Experimental study on turbidity and fluoride removal from mine water containing fluorine[J]. Energy Environmental Protection,2022,36(1):66−71.
|
[11] |
顾大钊,李 庭,李井峰,等. 我国煤矿矿井水处理技术现状与展望[J]. 煤炭科学技术,2021,49(1):11−18.
Gu Dazhao,Li Ting,LI Jingfeng,et al. Current status and prospects of coal mine water treatment technology in China[J]. Coal Science and Technology,2021,49(1):11−18.
|
[12] |
顾大钊,张 勇,曹志国. 我国煤炭开采水资源保护利用技术研究进展[J]. 煤炭科学技术,2016,44(1):1−7.
GU Dazhao,ZHANG Yong,CAO Zhiguo. Technical progress of water resource protection andutilization by coal mining in China[J]. Coal Science and Technology,2016,44(1):1−7.
|
[13] |
NEHA JAGTAP,MAHESH KUMAR YENKIE,et al. Fluoride in drinking water and defluoridation of water[J]. Chemical. Reviews,2012,112:2454−2466.
|
[14] |
白国良,梁 冰. 偏碱性矿井水演化过程中的水岩作用[J]. 地球科学与环境学报,2008,30(2):192−196.
BAI Guoliang,LIANG Bing. Water rock interaction during evolution alkalescent coal mine water[J]. Journal of Earth Science and Environment,2008,30(2):192−196.
|
[15] |
孙亚军,徐智敏,李 鑫,等. 我国煤矿区矿井水污染问题及防控技术体系构建[J]. 煤田地质与勘探,2021,49(5):1−16.
SUN Yajun,XU Zhimin,LI Xin,et al. Mine water drainage pollution in China’s coal mining areas and the construction of prevention and control technical system[J]. Coal Geology & Exploration,2021,49(5):1−16.
|
[16] |
苏双青,赵 焰,徐志清,等. 我国煤矿矿井水氟污染现状及除氟技术研究[J]. 能源与环保,2020,42(11):5−10.
SU Shuangqing,ZHAO Yan,XU Zhiqing et al. Status quo of fluoride pollution of coal mine water in China and research on fluoride removal technology[J]. China Energy and Environmental Protection,2020,42(11):5−10.
|
[17] |
谯贵川,杜 松,方惠明,等. 煤矿矿井水中氟化物处理发展研究及展望[J]. 中国煤炭地质,2021,33(11):56−61.
QIAO Guichuan,DU Song,FANG Huiming,et al. Research and prospect of fluoride treatment in coal mine water[J]. China Coal Geology,2021,33(11):56−61.
|
[18] |
RANGO T,BIANCHINI G,BECCALUVA L,et al. Hydrogeochemical study in the main ethiopian rift: new insights to the source and enrichment mechanism of fluoride[J]. Environmental Geology,2009,58(1):109−118. doi: 10.1007/s00254-008-1498-3
|
[19] |
LI Danni,GAO Xubo,WANG Yanxin,et al. Diverse mechanisms drive fluoride enrichment in groundwater in two neighboring sites in northern China[J]. Environmental Pollution,2018,237:430−441. doi: 10.1016/j.envpol.2018.02.072
|
[20] |
SIMONA REGENSPURG,LIOBA VIRCHOW,FRANZISKA D H Wilke,et al. Origin and migration of fluoride in the area of the Aluto Volcanic Complex (Main Ethiopian Rift)[J]. Applied Geochemistry,2022:105403.
|
[21] |
张玉卓,徐智敏,张 莉,等. 山东新巨龙煤矿区场地高TDS地下水水化学特征及成因机制[J]. 煤田地质与勘探,2021,49(5):52−62.
ZHANG Yuzhuo,XU Zhimin,ZHANG Li,et al. Hydrochemical characteristics and genetic mechanism of high TDS groundwater in Xinjulong Coal Mine[J]. Coal Geology & Exploration,2021,49(5):52−62.
|
[22] |
李随民,栾文楼,韩腾飞,等. 冀中南平原区土壤氟元素来源分析[J]. 中国地质,2012,39(3):794−803.
LI Suimin,LUAN Wenlou,HAN Tengfei,et al. A source analysis of soil fluorine in central south plain of hebei plain[J]. Geology of China,2012,39(3):794−803.
|
[23] |
张 伟,郝春明,刘 敏. 内蒙古布尔台煤矿高氟矿井水特征及成因分析[J]. 华北科技学院学报,2021,18(3):10−18.
ZHANG Wei,HAO Chunming,LIU Min. Characteristics and cause analysis of high fluorine mine water in boertai coal mine, Inner Mongolia[J]. Journal of North China Institute of Science And Technology,2021,18(3):10−18.
|
[24] |
郭洋楠,杨俊哲,张 政,等. 神东矿区矿井水的氢氧同位素特征及高氟矿井水形成的水-岩作用机制[J]. 煤炭学报,2021,46(S2):948−959.
GUO Yangnan,YANG Junzhe,ZHANG Zheng,et al. Hydrogen and oxygen isotope characteristics of mine water in Shendong mining area and water rock interaction mechanism of the formation of high-fluorine mine water[J]. Journal of China Coal Society,2021,46(S2):948−959.
|
[25] |
朱其顺,许光泉. 中国地下水氟污染的现状及研究进展[J]. 环境科学与管理,2009,34(1):42−44.
ZHU Qishun,XU Guangquan. The current situation and research progress of ground water fluorine pollution in China[J]. Environmental Science and Management,2009,34(1):42−44.
|
[26] |
RAFIQUE T,NASEEM S,USMANI T H,et al. Geochemical factors controlling the occurrence of high fluoride groundwater in the Nagar Parkar area, Sindh, Pakistan[J]. Journal of Hazardous Materials,2009,171:424−430. doi: 10.1016/j.jhazmat.2009.06.018
|
[27] |
杨思敏,李井峰,白 璐. 神东矿区典型矿井水中氟的分布特征及形成机制[J]. 煤炭科学技术,2022:1−11. doi: 10.13199/j.cnki.cst.2022-0427
YANG Simin,LI Jingfeng,BAI Lu. Spatial and temporal distribution characteristics and formation mechanism of fluoride in mine water of Typical Shendong mining area[J]. Coal Science and Technology,2022:1−11. doi: 10.13199/j.cnki.cst.2022-0427
|
[28] |
解国强,张 伟,郝春明. 神东矿区地下饮用含水层中氟化物的分布特征、来源和富集机制[J]. 科学技术与工程,2022,22(19):8554−8561.
XIE Guoqiang,ZHANG Wei,HAO Chunming. Distribution characteristics source and formation mechanisms of fluoride in the drinking ground-water in Shendong mining area[J]. Science Technology and Engineering,2022,22(19):8554−8561.
|
[29] |
单 耀. 含煤地层水岩作用与矿井水环境效应[D]. 徐州: 中国矿业大学, 2009.
SHAN Yao Water diagenesis of coal bearing strata and environmental effect of mine water [D]. Xuzhou: China University of Mining and Technology, 2009.
|
[30] |
顾大钊,张建民,王振荣,等. 神东矿区地下水变化观测与分析研究[J]. 煤田地质与勘探,2013,41(4):35−39.
GU Dazhao,ZHANG Jianmin,WANG Zhenrong,et al. Observation and analysis of groundwater change in Shendong mining area[J]. Coal Geology and Exploration,2013,41(4):35−39.
|
[31] |
张 凯,高 举,蒋斌斌,等. 煤矿地下水库水-岩相互作用机理实验研究[J]. 煤炭学报,2019,44(12):3760−3772.
ZHANG Kai,GAO Ju,JIANG Binbin,et al. Experimental study on the mechanism of water-rock interaction in the coal mine underground reservoir[J]. Journal of China coal Society,2019,44(12):3760−3772.
|
[32] |
李凯崇,邓述波,徐东耀. 地下水除氟技术的研究进展[J]. 资源环境与发展,2010(1):35−38.
LI Kaichong,DENG Shubo,XU Dongyao. Research progress for removing fluorine from groundwater[J]. Resources Environment and Development,2010(1):35−38.
|
[33] |
李 沛,刘泳佚,张茹星. 不同pH值条件下高岚河流域磷矿废石中磷素的浸出试验研究[J]. 安全与环境工程,2021,28(5):210−219,229.
LI Pei,LIU Yongyi,ZHANG Ruxing. Experimental study on leaching of phosphorus from phosphate rock waste in gaolanhe River Basin under different pH values[J]. Safety and Environmental Engineering,2021,28(5):210−219,229.
|
[34] |
李 睿,李 航. 土壤颗粒表面电场作用下固-液界面Mg2+-K+与Ca2+-K+交换动力学的比较研究[J]. 物理化学学报,2010,26(3):552−560.
LI Rui,LI Hang. Compararison study between Mg2+-K+与Ca2+-K+ exchange kinetics of under electric fields at the solid-liquid interface of soil[J]. Acta Phys. -Chim. Sin,2010,26(3):552−560.
|
[35] |
孙亚军,张 莉,徐智敏,等. 煤矿区矿井水水质形成与演化的多场作用机制及研究进展[J]. 煤炭学报,2022,47(1):423−437.
SUN Yajun,ZHANG Li,XU Zhimin,et al. Multi-field action mechanism and research progress ofcoal mine water quality formation and evolution[J]. Journal of China Coal Society,2022,47(1):423−437.
|
[36] |
李 果,吕情绪,许 峰. 神东矿区地表水和地下水水化学特征及其影响因素研究[J]. 煤炭工程,2022,54(4):145−150.
LI Guo,LYU Qingxu,XU Feng. hydrochemical characteristics and influencing factors of surface water and groundwater in Shendong mining area[J]. Coal Engineering,2022,54(4):145−150.
|
[37] |
李桂臣,李菁华,孙元田,等. 泥岩多尺度模型与水岩作用特性研究进展[J]. 煤炭学报,2022,47(3):1138−1154.
LI Guichen,LI Jinghua,SUN Yuantian,et al. Advance of multi-scale study on both analytic models and water-rock interaction characteristics of mudstone[J]. Journal of China Coal Society,2022,47(3):1138−1154.
|
[38] |
CHICAS S D, OMINE K,PRABHAKARAN M,et al. High fluoride in groundwater and associated non-carcinogenic risks at Tiruvannamalai region in Tamil Nadu[J]. Ecotoxicology and Environmental Safety,2022,233:113335. doi: 10.1016/j.ecoenv.2022.113335
|
[39] |
赵志宏. 岩石裂隙水-岩作用机制与力学行为研究[J]. 岩石力学与工程学报,2021,40(S2):3063−3073.
ZHAO Zhihong. Study on water-rock interaction mechanisms and mechanical behaviors of single rock fractures[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(S2):3063−3073.
|
[40] |
谢正苗,吴卫红,徐建民. 环境中氟化物的迁移和转化及其生态效应[J]. 环境科学进展,1999,2(7):41−54.
XIE Zhengmiao,WU Weihong,XU Jianmin. Translocation and transformation of fluorides in the environment and their biological effects[J]. Advances in Environmental Science,1999,2(7):41−54.
|
[41] |
HUANG Liwen,SUN Ziyong,ZHOU Aiguo,et al. Source and enrichment mechanism of fluoride in groundwater of the Hotan Oasis within the Tarim Basin, Northwestern China[J]. Environmental Pollution,2022,300:118962. doi: 10.1016/j.envpol.2022.118962
|
[42] |
HU Bin,SONG Xiaoguang ,LU Yan,et al. Fluoride enrichment mechanisms and related health risks of groundwater in the transition zone of geomorphic units, northern China[J]. Environmental Research,2022,212:113588.
|
1. |
张溪彧,董书宁,王皓,金鹏康,王晓东,王强民,张涛. 矿井水核晶诱导造粒除氟技术. 煤田地质与勘探. 2025(05): 188-195 .
![]() | |
2. |
焦华喆,陈曦,张铁岗,杨柳华,陈新明,HONAKER Rick,马俊伟,余洋. 黄河流域煤炭开发区地下水污染成因分析及防治建议. 中国地质. 2024(01): 143-156 .
![]() | |
3. |
梁煌,胡潭楸. 煤矿含氟矿井水除氟技术研究进展. 环保科技. 2024(06): 55-59 .
![]() | |
4. |
唐佳伟,张锁,刘兆峰,张海琴,包一翔,侯福林,郭强,曹志国,李井峰. 吸附法去除矿井水中F~-研究进展. 煤炭科学技术. 2023(05): 269-283 .
![]() |