GAO Yubing,WANG Qi,YANG Jun,et al. Mechanism of deformation and pressure relief control of dynamic gob-side entry surroundings in fully-mechanized caving mining for extra-thick coal seam[J]. Coal Science and Technology,2023,51(2):83−94
. DOI: 10.13199/j.cnki.cst.2022-1810Citation: |
GAO Yubing,WANG Qi,YANG Jun,et al. Mechanism of deformation and pressure relief control of dynamic gob-side entry surroundings in fully-mechanized caving mining for extra-thick coal seam[J]. Coal Science and Technology,2023,51(2):83−94 . DOI: 10.13199/j.cnki.cst.2022-1810 |
Affected by the superposition of working face mining, strong rock pressure phenomena such as rock burst and large deformation easily occur in the gob-side entry when mining extra-thick coal seams. Taking the extra-thick coal seam mining of Caojiatan Coal Mine in Yushen Mining Area as the engineering background, the appearance mechanism of strong mine pressure in gob-side entry is analyzed and a surrounding rock control technology based on deep-hole directional tension blasting and pressure relief is proposed in our study. The effects of the technology are comprehensively studied by numerical simulation and field experiment. It was found that under the condition of fully-mechanized top-coal caving mining in extra-thick coal seam, the large space long cantilever structure of the gob roof breaks and forms a bench rock beam block with a large length. The instability of the long cantilever structure or the roof key layer will cause strong dynamic pressure, which acts on the coal pillar and further transmits to the surrounding rock of the gob-side entry in the advanced mining area, which is the main reason for the large deformation of the floor heave. Numerical study shows that when the directional roof cutting is performed in the gob-side entry, the surrounding rock stress is transferred away from the entry to both sides. The peak stress value is significantly reduced and the stress range is reduced. The engineering test under different roof cutting conditions was carried out in the field. It was found that the deep-hole roof cutting pressure relief technology based on directional tension blasting can effectively reduce the surrounding rock pressure of the gob-side entry at the end of the ultra-thick coal seam working face. The average load of fore support in the entry was reduced by 11% and the average deformation of floor in the serious section of the entry was reduced by 65% after roof cutting. The combined blasting is beneficial to further reduce the deformation of the entry surroundings and improves the stability of the entry. The research results provide an effective method for controlling the deformation of entry induced by strong mining pressure in ultra-thick coal seam mining.
[1] |
何满潮,谢和平,彭苏萍,等. 深部开采岩体力学研究[J]. 岩石力学与工程学报,2005,24(16):2803−2813. doi: 10.3321/j.issn:1000-6915.2005.16.001
HE Manchao,XIE Heping,PENG Suping,et al. Study on rock mechanics in deep mining enginering[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(16):2803−2813. doi: 10.3321/j.issn:1000-6915.2005.16.001
|
[2] |
宋振骐,崔增娣,夏洪春,等. 无煤柱矸石充填绿色安全高效开采模式及其工程理论基础研究[J]. 煤炭学报,2010,35(5):705−710. doi: 10.13225/j.cnki.jccs.2010.05.017
SONG Zhenqi,CUI Zengdi,XIA Hongchun,et al. The fundamental theoretical and engineering research on the green safe no coal pillar mining model by mainly using coal gangue backfill[J]. Journal of China Coal Society,2010,35(5):705−710. doi: 10.13225/j.cnki.jccs.2010.05.017
|
[3] |
康红普,姜鹏飞,黄炳香,等. 煤矿千米深井巷道围岩支护-改性-卸压协同控制技术[J]. 煤炭学报,2020,45(3):845−864. doi: 10.13225/j.cnki.jccs.SJ20.0204
KANG Hongpu,JIANG Pengfei,HUANG Bingxiang,et al. Roadway strata control technology by means of bolting-modification-destressing in synergy in 1000 m deep coal mines[J]. Journal of China Coal Society,2020,45(3):845−864. doi: 10.13225/j.cnki.jccs.SJ20.0204
|
[4] |
孟祥军. 基于基本顶断裂位置的综放沿空掘巷煤帮支护技术[J]. 煤炭科学技术,2020,48(1):61−68. doi: 10.13199/j.cnki.cst.2020.01.008
MENG Xiangjun. Solid coal rib support technology of fully-mechanized mining along gob-side entry driving based on main roof fracture location[J]. Coal Science and Technology,2020,48(1):61−68. doi: 10.13199/j.cnki.cst.2020.01.008
|
[5] |
苏士杰. 综采过背斜构造邻空巷道冲击地压防治技术研究[J]. 煤炭科学技术,2020,48(3):120−125. doi: 10.13199/j.cnki.cst.2020.03.013
SU Shijie. Research on technology of preventing mine rock burst of roadways near gob when fully-mechanized over anticlinal structure[J]. Coal Science and Technology,2020,48(3):120−125. doi: 10.13199/j.cnki.cst.2020.03.013
|
[6] |
王 琦,潘 锐,李术才,等. 三软煤层邻空巷道破坏机制及锚注控制[J]. 煤炭学报,2016,41(5):1111−1119.
WANG Qi,PAN Yue,LI Shucai,et al. Gob side entry failure mechanism and control of bolt-grouting in three soft coal seam[J]. Journal of China Coal Society,2016,41(5):1111−1119.
|
[7] |
张俊文,刘 畅,李玉琳,等. 错层位邻空巷道围岩结构及其卸让压原理[J]. 煤炭学报,2018,43(8):2133−2143.
ZHANG Junwen,LIU Chang,LI Yulin,et al. Study on the surrounding rock structure of stagger layout roadway and its pressure release as well as deformation yielding mechanism[J]. Journal of China Coal Society,2018,43(8):2133−2143.
|
[8] |
姜福兴,王建超,孙广京,等. 深部开采邻空巷道冲击危险性的工程判据[J]. 煤炭学报,2015,40(8):1729−1736.
JIANG Fuxing,WANG Jianchao,SUN Guangjing,et al. Engineering criterion of gob-side entry rock burst hazard in deep mining[J]. Journal of China Coal Society,2015,40(8):1729−1736.
|
[9] |
姜耀东,宋红华,马振乾,等. 基于地应力反演的构造应力区邻空巷道窄煤柱宽度优化研究[J]. 煤炭学报,2018,43(2):319−326.
JIANG Yaodong,SONG Honghua,MA Zhenqian,et al. Optimization research on the width of narrow coal pillar along goaf tunnel in tectonic stress zone[J]. Journal of China Coal Society,2018,43(2):319−326.
|
[10] |
华心祝,刘 淑,刘增辉,等. 孤岛工作面沿空掘巷矿压特征研究及工程应用[J]. 岩石力学与工程学报,2011,30(8):1646−1651.
HUA Xinzhu,LIU Shu,LIU Zenghui,et al. Research on strata pressure characteristic of gob-side entry driving in island mining face and its engineering application[J]. Chinese Journal of Rock Mechanics and Engineering,2011,30(8):1646−1651.
|
[11] |
王德超,李术才,王 琦,等. 深部厚煤层综放沿空掘巷煤柱合理宽度试验研究[J]. 岩石力学与工程学报,2014,33(3):539−548. doi: 10.13722/j.cnki.jrme.2014.03.012
WANG Dechao,LI Shucai,WANG Qi,et al. Experimental study of reasonable coal pillar width in fully mechanized top coal caving face of deep thick coal seam[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(3):539−548. doi: 10.13722/j.cnki.jrme.2014.03.012
|
[12] |
刘金海,姜福兴,王乃国,等. 深井特厚煤层综放工作面区段煤柱合理宽度研究[J]. 岩石力学与工程学报,2012,31(5):921−927. doi: 10.3969/j.issn.1000-6915.2012.05.008
LIU Jinhai,JIANG Fuxing,WANG Naiguo,et al. Research on reasonable width of segment pillar of fully mechanized caving face in extra-thick coal seam of deep shaft[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(5):921−927. doi: 10.3969/j.issn.1000-6915.2012.05.008
|
[13] |
ZHANG G C,WEN Z J,LIANG S J,et al. Ground response of a gob-side entry in a longwall panel extracting 17m-thick coal seam: a case study[J]. Rock Mechanics and Rock Engineering,2020,53(2):497−516. doi: 10.1007/s00603-019-01922-5
|
[14] |
WANG Q,JIANG Z,JIANG B,et al. Research on an automatic roadway formation method in deep mining areas by roof cutting with high-strength bolt-grouting[J]. International Journal of Rock Mechanics and Mining Sciences,2020,128:104264. doi: 10.1016/j.ijrmms.2020.104264
|
[15] |
张 农,韩昌良,阚甲广,等. 沿空留巷围岩控制理论与实践[J]. 煤炭学报,2014,39(8):1635−1641. doi: 10.13225/j.cnki.jccs.2014.9026
ZHANG Nong,HAN Changliang,KAN Jiaguang,et al. Theory and practice of surrounding rock control for pillarless gob-side entry retaining[J]. Journal of China Coal Society,2014,39(8):1635−1641. doi: 10.13225/j.cnki.jccs.2014.9026
|
[16] |
柏建彪,周华强,侯朝炯,等. 沿空留巷巷旁支护技术的发展[J]. 中国矿业大学学报,2004,33(2):59−62. doi: 10.3321/j.issn:1000-1964.2004.02.014
BAI Jianbiao,ZHOU Huaqiang,HOU Chaojiong,et al. Development of support technology beside roadway in goaf-side entry retaining for next sublevel[J]. Journal of China University of Mining & Technology,2004,33(2):59−62. doi: 10.3321/j.issn:1000-1964.2004.02.014
|
[17] |
何满潮,高玉兵,杨 军,等. 厚煤层快速回采切顶卸压无煤柱自成巷工程试验[J]. 岩土力学,2018,39(1):254−264. doi: 10.16285/j.rsm.2016.2329
HE Manchao,GAO Yubing,YANG Jun,et al. Engineering experimentation of gob-side entry retaining formed by roof cutting and pressure release in a thick-seam fast-extracted mining face[J]. Rock and Soil Mechanics,2018,39(1):254−264. doi: 10.16285/j.rsm.2016.2329
|
[18] |
高玉兵,郭志飚,杨 军,等. 沿空切顶巷道围岩结构稳态分析及恒压让位协调控制[J]. 煤炭学报,2017,42(7):1672−1681. doi: 10.13225/j.cnki.jccs.2016.1350
GAO Yubing,GUO Zhibiao,YANG Jun,et al. Steady analysis of gob-side entry retaining formed by roof fracturing and control techniques by op-timizing mine pressure[J]. Journal of China Coal Society,2017,42(7):1672−1681. doi: 10.13225/j.cnki.jccs.2016.1350
|
[19] |
高玉兵,杨 军,何满潮,等. 厚煤层无煤柱切顶成巷碎石帮变形机制及控制技术研究[J]. 岩石力学与工程学报,2017,36(10):2492−2502. doi: 10.13722/j.cnki.jrme.2017.0949
GAO Yubing,YANG Jun,HE Manchao,et al. Mechanism and control techniques for gangue rib deformations in gob-side entry retaining formed by roof fracturing in thick coal seams[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(10):2492−2502. doi: 10.13722/j.cnki.jrme.2017.0949
|
[20] |
WANG Y,HE M,YANG J,et al. Case study on pressure-relief mining technology without advance tunneling and coal pillars in longwall mining[J]. Tunnelling and Underground Space Technology,2020,97:103236. doi: 10.1016/j.tust.2019.103236
|
[21] |
于 斌,刘长友,刘锦荣. 大同矿区特厚煤层综放回采巷道强矿压显现机制及控制技术[J]. 岩石力学与工程学报,2014,33(9):1863−1872. doi: 10.13722/j.cnki.jrme.2014.09.017
YU Bin,LIU Changyou,LIU Jinrong,et al. Mechanism and control technology of pressure occurence in roadway with extra thickness and mechanized caving coal seam in Datong mining area[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(9):1863−1872. doi: 10.13722/j.cnki.jrme.2014.09.017
|
[22] |
王金华. 特厚煤层大采高综放开采关键技术[J]. 煤炭学报,2013,38(12):2089−2098. doi: 10.13225/j.cnki.jccs.2013.12.013
WANG Jinhua. Key technology for fully-mechanized top coal caving with large mining height in extra-thick coal seam[J]. Journal of China Coal Society,2013,38(12):2089−2098. doi: 10.13225/j.cnki.jccs.2013.12.013
|
[23] |
高玉兵,杨 军,张星宇,等. 深井高应力巷道定向拉张爆破切顶卸压围岩控制技术研究[J]. 岩石力学与工程学报,2019,38(10):2045−2056. doi: 10.13722/j.cnki.jrme.2019.0465
GAO Yubing,YANG Jun,ZHANG Xingyu,et al. Study on surrounding rock control of roadways in deep coal mines based on roof cutting and pressure release technology by directional tensile blasting[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(10):2045−2056. doi: 10.13722/j.cnki.jrme.2019.0465
|
[24] |
徐晓鼎. 曹家滩矿井特厚煤层沿空巷道强矿压显现机制及卸压控制研究[D]. 长春: 吉林大学, 2022.
XU Xiaoding. Study on strong rockpressure behavior mechanism and pressure relief control of gob-side entry in caojiatan mine with extra thick[D]. Changchun: Jilin University, 2022.
|
[25] |
徐晓鼎,周跃进,高玉兵,等. 基于“三铰拱-弹簧”模型的复合底板巷道非对称底鼓机制及卸压控制[J]. 岩石力学与工程学报,1-14[2022-10-31].DOI: 10.13722/j.cnki.jrme.2022.0796.
XU Xiaoding,ZHOU Yuejin,GAO Yubing,et al. Asymmetric floor heave mechanism and pressure relief control in composite bottom-slab roadways based on the “three-hinged arch-spring” model[J]. Chinese Journal of Rock Mechanics and Engineering,1-14[2022-10-31].DOI: 10.13722/j.cnki.jrme.2022.0796.
|
[26] |
钱鸣高, 石平五, 许家林. 矿山压力与岩层控制[M]. 徐州: 中国矿业大学出版社, 2010.
|
1. |
杨德传, 刘浩, 刘畅. 谢桥煤矿厚硬顶板切顶卸压围岩控制技术研究. 煤炭与化工. 2025(06)
![]() | |
2. |
贺淼鑫. 动压巷道围岩变形机理及其控制技术研究. 煤矿现代化. 2025(01): 58-65 .
![]() | |
3. |
张旭峰. 厚煤层动压影响巷道围岩控制技术研究. 能源与节能. 2025(01): 133-135+139 .
![]() | |
4. |
高超,张宇. 中厚煤层切顶卸压无煤柱自成巷技术研究与应用. 煤炭技术. 2025(03): 8-12 .
![]() | |
5. |
朱红伟,康忠全,宋炳霖,冯攀飞. 动静载叠加条件下近直立煤层巷道围岩损伤特征及支护优化. 工矿自动化. 2025(02): 138-147 .
![]() | |
6. |
蒋邦友,李文帅,张宇,姜良金,任思安. 厚及特厚煤层开采煤层大巷失稳机理及控制研究. 采矿与安全工程学报. 2025(02): 333-344 .
![]() | |
7. |
朱建涛,张一铭. 基于强度理论的新窑煤矿巷旁煤柱稳定性分析及留设宽度研究. 陕西煤炭. 2025(04): 1-7+34 .
![]() | |
8. |
吉培溪. 厚硬顶板切顶沿空留巷围岩变形特征及演化规律研究. 煤矿现代化. 2025(03): 152-155+160 .
![]() | |
9. |
石智涵,刘学生,高宇栋,李虎,李学斌,孔令哲,卢文龙. 千米深井大采高工作面超前切顶卸压软岩大巷防护技术. 中国矿业. 2025(05): 163-175 .
![]() | |
10. |
成世兴,王灿,梁鹏飞,贺文慧. 小煤柱巷道坚硬顶板预裂聚能管空孔协同导向规律研究. 煤炭技术. 2025(06): 29-34 .
![]() | |
11. |
余从,唐志刚,赵宏斌,唐龙,李海波. 厚硬关键层下邻空巷道分区支护技术与应用研究. 煤炭技术. 2025(06): 89-96 .
![]() | |
12. |
李东印,敖良凯,王伸,黄传波,李红斌. 煤矿顶板深孔爆破封孔长度的确定方法. 煤炭学报. 2025(05): 2367-2383 .
![]() | |
13. |
康志鹏,罗勇,段昌瑞. 特厚煤层低位双硬顶板破断失稳规律试验研究. 矿业研究与开发. 2024(01): 48-53 .
![]() | |
14. |
段宝福,陈佳华,柴明星,魏玉冠,荆哲,杨云倩. 深孔聚能预裂爆破切顶卸压机理与应用. 山东科技大学学报(自然科学版). 2024(01): 1-10 .
![]() | |
15. |
靳苏平. 厚煤层沿空留巷“煤—支护体”组合承载结构力学特性分析. 能源与环保. 2024(02): 256-261+268 .
![]() | |
16. |
季飞. 临空巷道煤柱割缝爆破切顶联合卸压技术研究. 煤炭工程. 2024(03): 66-74 .
![]() | |
17. |
王方田,屈鸿飞,张洋,刘超,郝文华,江振鹏. 松软厚煤层区段煤柱剪切滑块运动机理及协同控制技术. 煤炭学报. 2024(03): 1332-1344 .
![]() | |
18. |
李点尚,张海骄,孙乐乐,马磊,姜健,漆容之. 深埋矿井切顶卸压保护底板采区大巷技术研究. 煤炭科技. 2024(02): 134-141 .
![]() | |
19. |
郝英豪,韩昌良,杨帆,白刚. 深部强矿压大变形巷道修复技术研究. 内蒙古煤炭经济. 2024(05): 9-12 .
![]() | |
20. |
彭林军,吴家遥,何满潮,宫凯旋,陈东旭,徐顺钰. 深部特厚煤层综放沿空掘巷煤柱优化及巷道支护. 西安科技大学学报. 2024(03): 563-574 .
![]() | |
21. |
常聚才,齐潮,殷志强,史文豹,吴博文,王拓,高翔. 爆破扰动高应力巷道围岩力学响应特征研究. 煤炭科学技术. 2024(06): 1-13 .
![]() | |
22. |
高晓进,张震,黄志增,蔺星宇,薛吉胜,庞立宁. 深井直覆硬厚顶板侧向破断模式及采动应力响应特征研究. 岩土力学. 2024(08): 2450-2461 .
![]() | |
23. |
王开伟,张华磊. 厚坚硬顶板来压规律与放顶研究. 山东煤炭科技. 2024(07): 147-151 .
![]() | |
24. |
任霄洋,郭俊庆,张百胜,郗泽涛,卢春生,李恒忠. 多层坚硬顶板动压巷道矿压显现规律及深浅孔组合爆破切顶控制技术研究. 矿业研究与开发. 2024(09): 48-55 .
![]() | |
25. |
尚文政,刘志刚,游武超,袁健博. 深部厚煤层回采巷道支护设计及围岩控制研究. 煤矿安全. 2024(09): 139-148 .
![]() | |
26. |
陈洋,李长青,张沿,张丽丽,苏苗苗,栾博宇. 长壁膏体充填开采覆岩运移特征及矿压显现规律研究. 矿业科学学报. 2024(05): 737-746 .
![]() | |
27. |
丁维波,高卫卫,肖琦,王丹影. 特厚煤层回采巷道底鼓力学特性及控制研究. 中国煤炭. 2024(10): 75-83 .
![]() | |
28. |
韩秉呈,张昌锁,张晨,王世宇. 厚煤层双巷布置切顶卸压作用机制. 太原理工大学学报. 2024(06): 989-999 .
![]() | |
29. |
肖同强,任勇辉,神文龙,贾义雪,许磊,刘发义,代晓亮. 深部高瓦斯强动压巷道切顶卸压机制及技术研究. 采矿与岩层控制工程学报. 2024(06): 130-144 .
![]() | |
30. |
杨洋. 综采工作面爆破切顶技术及应用效果——以王坡煤矿3307工作面为例. 科技和产业. 2024(24): 354-358 .
![]() | |
31. |
林榆昆,刘江伟,刘耀友,刘长友. 迎采掘进巷道水力切顶关键部位对顶板断裂行为的影响. 煤炭学报. 2024(S2): 593-605 .
![]() | |
32. |
于建军. 丘陵盖山极近距离煤层开采巷道变形特征与规律研究. 山西焦煤科技. 2023(06): 4-9 .
![]() | |
33. |
何满潮,盖秋凯,高玉兵,张星星. 坚硬顶板无煤柱自成巷碎胀平衡机理与调控研究. 中国矿业大学学报. 2023(05): 831-844+930 .
![]() | |
34. |
崔千里,于水,王学强,孙周月,陈朝. 松软厚煤层留顶煤动压巷道支护技术研究. 能源与环保. 2023(12): 56-61 .
![]() |