PEI Xiaodong,HAO Haiqing,WANG Kai,et al. Research and application of fire air and smoke flow emergency control technology for mine complex ventilation network[J]. Coal Science and Technology,2023,51(5):124−132
. DOI: 10.13199/j.cnki.cst.2022-1787Citation: |
PEI Xiaodong,HAO Haiqing,WANG Kai,et al. Research and application of fire air and smoke flow emergency control technology for mine complex ventilation network[J]. Coal Science and Technology,2023,51(5):124−132 . DOI: 10.13199/j.cnki.cst.2022-1787 |
In view of the difficult situation of fire prevention, control, disaster resistance and relief in complex ventilation networks, the laws of air flow disturbance, heat transfer and smoke flow diffusion in air flow field, temperature field and smoke flow concentration field are analyzed. According to the evolution law of smoke flow at different fire source locations, an emergency linkage regulation scheme of fire air and smoke flow that can simultaneously meet the requirements of smoke exhaust air volume and stope air volume is proposed. Taking Zhuanlongwan Coal Mine as an application case, the fire smoke emergency linkage control system of Zhuanlongwan Coal Mine was established. In order to analyze the effect of air control and smoke exhaust, combined with the actual tunnel and ventilation parameters, a three-dimensional visualization model of its complex ventilation network was built based on VENTSIM software. The VentFire module is used to simulate the wind and smoke spreading effect of the fire scene in different fire source locations. The smoke exhaust effect and air volume distribution before and after the emergency control scheme is adopted are analyzed. The results show that when a fire occurs in different locations, the emergency smoke exhaust scheme should be started in time. On the basis of meeting the smoke exhaust air volume, the air volume of other key locations can still ensure more than 90% of the normal ventilation period, which can meet the disaster control and relief needs during the disaster of Zhuanlongwan Coal Mine.
[1] |
WANG Kai,HAO Haiqing,JIANG Shuguang,et al. Escape route optimization by cellular automata based on the multiple factors during the coal mine disasters[J]. Natural Hazards,2019,99(1):91−115. doi: 10.1007/s11069-019-03721-1
|
[2] |
郭 军,蔡国斌,郑学召,等. 矿井热动力灾害及救援安全性判定研究现状及展望[J]. 煤炭科学技术,2020,48(12):116−122. doi: 10.13199/j.cnki.cst.2020.12.014
GUO Jun,CAI Guobin,ZHENG Xuezhao,et al. Research status and prospect of mine thermal disaster and rescue safety judgement[J]. Coal Science and Technology,2020,48(12):116−122. doi: 10.13199/j.cnki.cst.2020.12.014
|
[3] |
李 晶. 矿井火灾事故调查关键技术难题及对策分析[J]. 矿业安全与环保,2016,43(1):111−114. doi: 10.3969/j.issn.1008-4495.2016.01.029
LI Jing. Analysis on key technical problems of mine fire accident investigation and counter measures[J]. Mining Safety & Environmental Protection,2016,43(1):111−114. doi: 10.3969/j.issn.1008-4495.2016.01.029
|
[4] |
CHOW W K,GAO Y,ZHAO J H,et al. Smoke movement in tilted tunnel fires with longitudinal ventilation[J]. Fire Safety Journal,2015,75:14−22. doi: 10.1016/j.firesaf.2015.04.001
|
[5] |
FURIO Cascetta,MARILENA Musto,GIUSEPPE Rotondo. Innovative experimental reduced scale model of road tunnel equipped with realistic longitudinal ventilation system[J]. Tunnelling and Underground Space Technology,2016,52:85−98. doi: 10.1016/j.tust.2015.11.025
|
[6] |
LI Qing,KANG Jianhong,WU Yuntao,et al. Theoretical and numerical study of smoke back-layering length for an inclined tunnel under longitudinal ventilation[J]. Fire Technology,2022,58(4):2143−2166. doi: 10.1007/s10694-022-01250-1
|
[7] |
ZHAO Xiaolong,CHEN Changkun,SHI Congling,et al. An extended model for predicting the temperature distribution of large area fire ascribed to multiple fuel source in tunnel[J]. Tunnelling and Underground Space Technology,2019,85:252−258. doi: 10.1016/j.tust.2018.12.013
|
[8] |
ALI Haghighat,KRAY Luxbacher. Tenability analysis for improvement of firefighters’ performance in a methane fire event at a coal mine working face[J]. Journal of Fire Sciences,2018,36(3):256−274. doi: 10.1177/0734904118767066
|
[9] |
文 虎,张 铎,郑学召. 煤矿平巷火灾数值模拟及其特征参数研究[J]. 煤炭科学技术,2017,45(4):62−67.
WEN Hu,ZHANG Duo,ZHENG Xuezhao. Study on numerical simulation and feature parameters of fire disasters occurred in mine roadway[J]. Coal Science and Technology,2017,45(4):62−67.
|
[10] |
程卫民,姚玉静,吴立荣,等. 基于Fluent的矿井火灾时期温度及浓度分布数值模拟[J]. 煤矿安全,2012,43(2):20−24. doi: 10.13347/j.cnki.mkaq.2012.02.016
CHENG Weimin,YAO Yujing,WU Lirong,et al. Fluent-based numerical simulation of temperature and concentration during mine fire[J]. Safety in Coal Mines,2012,43(2):20−24. doi: 10.13347/j.cnki.mkaq.2012.02.016
|
[11] |
王 凯,郝海清,蒋曙光,等. 矿井火灾风烟流区域联动与智能调控系统研究[J]. 工矿自动化,2019,45(7):21−27.
WANG Kai,HAO Haiqing,JIANG Shuguang,et al. Research on regional linkage and intelligent control system of mine fire wind-smoke flow[J]. Industry and Mine Automation,2019,45(7):21−27.
|
[12] |
郝海清,王 凯,张春玉,等. 矿井皮带巷火灾风烟流场–区-网演化与调控规律[J]. 中国矿业大学学报,2021,50(4):716−724.
HAO Haiqing,WANG Kai,ZHANG Chunyu,et al. Evolution and regulation law of wind and smoke flow field area network in mine belt roadway fire[J]. Journal of China University of Mining & Technology,2021,50(4):716−724.
|
[13] |
李祥春,蒋 颖,李梅生. 巷道火灾时期流场及瓦斯浓度变化规律数值模拟研究[J]. 煤炭科学技术,2019,47(5):119−125.
LI Xiangchun,JIANG Ying,LI Meisheng. Study on numerical simulation of variations of airflow field and gas concen-tration during roadway fire[J]. Coal Science and Technology,2019,47(5):119−125.
|
[14] |
季经纬,程远平. 矿井火灾中火场能见度的估算方法[J]. 中国矿业大学学报,2006,35(2):149−152. doi: 10.3321/j.issn:1000-1964.2006.02.002
JI Jingwei,CHENG Yuanping. Estimation approach for predicting fire visibility in mine fires[J]. Journal of China University of Mining & Technology,2006,35(2):149−152. doi: 10.3321/j.issn:1000-1964.2006.02.002
|
[15] |
张圣柱,程卫民,张如明,等. 矿井胶带巷火灾风流稳定性模拟与控制技术研究[J]. 煤炭学报,2011,36(5):812−817. doi: 10.13225/j.cnki.jccs.2011.05.026
ZHANG Shengzhu,CHENG Weimin,ZHANG Ruming,et al. Stability simulation and control technology of airflow during fire in mine belt roadway[J]. Journal of China Coal Society,2011,36(5):812−817. doi: 10.13225/j.cnki.jccs.2011.05.026
|
[16] |
吴 兵,周心权,谢 宏. 矿井火灾风流的远程自动控制[J]. 煤矿安全,2003,34(10):13−15. doi: 10.3969/j.issn.1003-496X.2003.10.006
WU Bing,ZHOU Xinquan,XIE Hong. Long-distance automatic control for mine fire air flow[J]. Safety in Coal Mines,2003,34(10):13−15. doi: 10.3969/j.issn.1003-496X.2003.10.006
|
[17] |
MCGRATTAN K B, FORNEY G P, FLOYD J, et al. Fire dynamics simulator(version 5): User's guide[M]. US Department of Commerce, Technology Administration, National Institute of Standards and Technology, 2005.
|
[18] |
INOKA Eranda Perera,CHARLES D Litton. Impact of air velocity on the detection of fires in conveyor belt haulageways[J]. Fire technology,2012,48:405−418. doi: 10.1007/s10694-011-0228-7
|
[19] |
LITTON C D,PERERA I E. Evaluation of criteria for the detection of fires in underground conveyor belt haulageways[J]. Fire Safety Journal,2012,51:110−119. doi: 10.1016/j.firesaf.2012.04.004
|
[20] |
陈晓晶. 基于“云-边-端”协同的煤矿火灾智能化防控体系建设[J]. 煤炭科学技术,2022,50(12):136−143.
CHEN Xiaojing. Discussion on the construction of intelligent prevention andcontrol of coal mine fire based on “cloud-edge-end” cooperation[J]. Coal Science and Technology,2022,50(12):136−143.
|
[21] |
WANG Kai,JIANG Shuguang,WU Zhengyan,et al. Intelligent safety adjustment of branch air flow volume during ventilation-on-demand changes in coal mines[J]. Process Safety and Environmental Protection,2017,111:491−506. doi: 10.1016/j.psep.2017.08.024
|
[22] |
郝海清,蒋曙光,王 凯,等. 基于Ventsim的矿井运输巷火灾风烟流应急调控技术[J]. 煤矿安全,2022,53(9):38−46. doi: 10.13347/j.cnki.mkaq.2022.09.006
HAO Haiqing,JIANG Shuguang,WANG Kai,et al. Emergency control technology of air and smoke flow in mine belt roadway fire based on Ventsim software[J]. Safety in Coal Mines,2022,53(9):38−46. doi: 10.13347/j.cnki.mkaq.2022.09.006
|
[23] |
ZHOU Gang,CHENG Weimin,ZHANG Rui,et al. Numerical simulation and disaster prevention for catastrophic fire airflow of main air-intake belt roadway in coal mine: a case study[J]. Journal of Central South University,2015,22(6):2359−2368. doi: 10.1007/s11771-015-2761-x
|
1. |
孙继平,李小伟. 矿井外因火灾图像凹陷度识别方法. 煤炭科学技术. 2025(01): 341-355 .
![]() | |
2. |
刘湘滢. 矿井智能通风研究进展及展望. 工矿自动化. 2025(04): 44-56 .
![]() | |
3. |
李伟,刘彦青,张浪. 外因火灾通风网络风量风质失效模型与数值解算方法. 煤炭科学技术. 2025(05): 196-212 .
![]() | |
4. |
李金虎,黄珏洁,陆伟,徐天硕,汪洋. 煤中高活性含碳固体自由基与煤自燃反应性的相关关系. 煤炭科学技术. 2024(12): 127-142 .
![]() |