Advance Search

YANG Ke,ZHANG Zhainan,HUA Xinzhu,et al. Microscopic mechanism of loading rate of saturated coal sample mechanics and damage characteristics[J]. Coal Science and Technology,2023,51(2):130−142

. DOI: 10.13199/j.cnki.cst.2022-1750
Citation:

YANG Ke,ZHANG Zhainan,HUA Xinzhu,et al. Microscopic mechanism of loading rate of saturated coal sample mechanics and damage characteristics[J]. Coal Science and Technology,2023,51(2):130−142

. DOI: 10.13199/j.cnki.cst.2022-1750

Microscopic mechanism of loading rate of saturated coal sample mechanics and damage characteristics

Funds: 

Regional Innovation and Development Joint Project of National Natural Science Foundation of China (U21A20110); Shanxi Province Science and Technology Major Projects unveiled (20191101016)

More Information
  • Received Date: September 19, 2022
  • Available Online: April 20, 2023
  • In order to explore whether the advance rate of the working face will have a secondary impact on the safe and efficient production of coal mine after coal seam water injection prevents impact pressure and relieves the danger, uniaxial compression tests of dry and saturated coal samples under different loading rates were carried out, and the loading rate effects of peak intensity, acoustic emission energy,RAvalue andAFvalue, fracture morphology, fractal dimension and impact tendency characteristics of saturated coal samples are explored, and the microscopic mechanism of loading rate of saturated coal sample damage failure characteristics was revealed. The results show that with the increase of loading rate, the peak intensity of dry and saturated coal samples first decreases and then increases, and the loading rate of 0.01mm/s is the critical loading rate leading to the intensity transition. The macroscopic failure mode of saturated coal samples under different loading rates is a tensile-shear composite failure dominated by shear failure, and the maximum acoustic emission energy value first decreases and then increases, and reaches the minimum value at the critical loading rate. The proportion of microscopic shear fractures in saturated coal samples first decreases and then increases, and reaches a minimum value at the critical loading rate. The fracture morphology of saturated coal samples transitions from long trough-like fractures to completely irregular fractures, and the critical loading rate was the turning point at which a large number of irregular fractures begin to appear. With the increase of loading rate, the proportion of small-sized coal chips crushed by saturated coal samples decreased, and the proportion of large-sized coal chips increased. The fractal dimension of dry and saturated coal samples gradually decreased, the fitting curve satisfies the power function law, and the fractal dimension of saturated coal samples increases compared with that of dry coal samples. With the increase of loading rate, theKE of dry and saturated coal samples decreased first and then increased, reaching a minimum at the critical loading rate. The inhibition effect of coal seam water injection on the impact pressure of the working face is higher than the inducing effect of the loading rate on the working face. Before the critical loading rate, with the increase of the loading rate, the pore water pressure inside the microfractures of the saturated coal sample increased less, the contribution stiffness was small, and the competitiveness was weak, while the crack growth rate increased faster and the competitiveness was stronger. After that, the pore water pressure increased greatly, the contribution stiffness increased, and the competitiveness was strong, while the crack growth rate increased relatively slowly and the competitiveness was weak. Under the competition of two factors, pore water pressure and crack growth rate, the mechanical and damage characteristics of saturated coal samples with different loading rates showed nonlinear characteristics.

  • [1]
    谢和平,高 峰,鞠 杨,等. 深地煤炭资源流态化开采理论与技术构想[J]. 煤炭学报,2017,42(3):547−556.

    XIE He-ping,GAO Feng,JU Yang,et al. Theoretical and technological conception of the fluidization mining for deep coal resources[J]. Journal of China Coal Society,2017,42(3):547−556.
    [2]
    姜耀东, 赵毅鑫. 我国煤矿冲击地压的研究现状: 机制、预警与控制[J]. 岩石力学与工程学报, 2015, 34(11): 2188−2204.

    JIANG Yaodong, ZHAO Yixin. State of the art: investigation on mechanism, forecast and control of coal bumps in china[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(11): 2188−2204.
    [3]
    齐庆新, 欧阳振华, 赵善坤, 等. 我国冲击地压矿井类型及防治方法研究[J]. 煤炭科学技术, 2014, 42(10): 1−5.

    QI Qingxin, OUYANG Zhenhua, ZHAO Shankun, et al. Study on types of rock burst mine and prevention methods in china[J]. Coal Science and Technology, 2014, 42(10): 1−5.
    [4]
    潘一山. 煤与瓦斯突出、冲击地压复合动力灾害一体化研究[J]. 煤炭学报, 2016, 41(1): 105−112.

    PAN Yishan. Integrated study on compound dynamic disaster of coal-gas outburst and rockburst[J]. Journal of China Coal Society, 2016, 41(1): 105−112.
    [5]
    王 岗, 潘一山, 肖晓春. 电荷感应法检测煤层注水防冲效果研究[J]. 岩土工程学报, 2019, 41(2): 311−319.

    WANG Gang, PAN Yishan, XIAO Xiaochun. Detection of effects of rock burst prevention by water injection into coal seam using charge induction method[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 311−319.
    [6]
    谢广祥,常聚才,华心祝. 开采速度对综放面围岩力学特征影响研究[J]. 岩土工程学报,2007,29(7):963−967. doi: 10.3321/j.issn:1000-4548.2007.07.002

    XIE Guangxiang,CHANG Jucai,HUA Xinzhu. Influence of mining velocity on mechanical characteristics of surrounding rock in fully mechanized top-coal caving face[J]. Chinese Journal of Geotechnical Engineering,2007,29(7):963−967. doi: 10.3321/j.issn:1000-4548.2007.07.002
    [7]
    王 磊, 谢广祥. 综采面推进速度对煤岩动力灾害的影响研究[J]. 中国矿业大学学报, 2010, 39(1): 70−74.

    WANG Lei, XIE Guangxiang. Influence of mining velocity on dynamic disasters in the coal and rock mass at a fully mechanized mining face[J]. Journal of China University of Mining & Technology, 2010, 39(1): 70−74.
    [8]
    崔 峰, 贾 冲, 来兴平, 等. 基于加卸载响应比的冲击地压矿井急倾斜巨厚煤层推进速度研究[J]. 煤炭学报, 2022, 47(2): 745−761.

    CUI Feng, JIA Chong, LAI Xingping, et al. Study on advancing rate of steeply inclined extra-thick coal seam in rock burst mine based on loading-unloading response ratio[J]. Journal of China Coal Society, 2022, 47(2): 745−761.
    [9]
    王 凯,蒋一峰,徐 超. 不同含水率煤体单轴压缩力学特性及损伤统计模型研究[J]. 岩石力学与工程学报,2018,37(5):1070−1079.

    WANG Kai,JIANG Yifeng,XU Chao. Mechanical properties and statistical damage model of coal with different moisture contents under uniaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(5):1070−1079.
    [10]
    秦 虎,黄 滚,王维忠. 不同含水率煤岩受压变形破坏全过程声发射特征试验研究[J]. 岩石力学与工程学报,2012,31(6):1115−1120.

    QIN Hu,HUANG Gun,WANG Weizhong. Experimental study of acoustic emission characteristics of coal samples with different moisture contents in process of compression deformation and failure[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(6):1115−1120.
    [11]
    冯国瑞,文晓泽,郭 军,等. 含水率对煤样声发射特征和碎块分布特征影响的试验研究[J]. 中南大学学报(自然科学版),2021,52(8):2910−2918.

    FENG Guorui,WEN Xiaoze,GUO Jun,et al. Study on influence of moisture content on coal sample AE properties and fragment distribution characteristics[J]. Journal of Central South University (Science and Technology),2021,52(8):2910−2918.
    [12]
    杨 科,魏 祯,窦礼同,等. 含水煤样动态拉伸能量演化与破坏特征试验研究[J]. 煤炭学报,2021,46(2):398−411. doi: 10.13225/j.cnki.jccs.XR20.1857

    YANG Ke,WEI Zhen,DOU Litong,et al. Research on dynamic tensile energy evolution and fractal characteristics of water-bearing coal samples[J]. Journal of China Coal Society,2021,46(2):398−411. doi: 10.13225/j.cnki.jccs.XR20.1857
    [13]
    李彦伟,姜耀东,杨英明,等. 煤单轴抗压强度特性的加载速率效应研究[J]. 采矿与安全工程学报,2016,33(4):754−760.

    LI Yanwei,JIANG Yaodong,YANG Yingming,et al. Research on loading rate effect of uniaxial compressive strength of coal[J]. Journal of Mining & Safety Engineering,2016,33(4):754−760.
    [14]
    李海涛,蒋春祥,姜耀东,等. 加载速率对煤样力学行为影响的试验研究[J]. 中国矿业大学学报,2015,44(3):430−436.

    LI Haitao,JIANG Chunxiang,JIANG Yaodong,et al. Mechanical behavior and mechanism analysis of coal samples based on loading rate effect[J]. Journal of China University of Mining & Technology,2015,44(3):430−436.
    [15]
    李海涛,宋 力,周宏伟,等. 多加载速率影响下煤强度的非线性演化机制试验研究及应用[J]. 岩石力学与工程学报,2016,35(S1):2978−2989.

    LI Haitao,SONG Li,ZHOU Hongwei,et al. Experimental study of nonlinear evolution mechanism of coal strength under multi-loading rates and its application[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(S1):2978−2989.
    [16]
    黄 达,黄润秋,张永兴. 粗晶大理岩单轴压缩力学特性的静态加载速率效应及能量机制试验研究[J]. 岩石力学与工程学报,2012,31(2):245−255.

    HUANG Da,HUANG Runqiu,ZHANG Yongxing. Experimental investigations on static loading rate effects on mechanical properties and energy mechanism of coarse crystal grain marble under uniaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(2):245−255.
    [17]
    孟庆彬,韩立军,浦 海,等. 尺寸效应和应变速率对岩石力学特性影响的试验研究[J]. 中国矿业大学学报,2016,45(2):233−243.

    MENG Qingbin,HAN Lijun,PU Hai,et al. Effect of size effect and strain rate on the mechanical behavior of rock specimens[J]. Journal of China University of Mining & Technology,2016,45(2):233−243.
    [18]
    曹安业,井广成,窦林名,等. 不同加载速率下岩样损伤演化的声发射特征研究[J]. 采矿与安全工程学报,2015,32(6):923−928,935.

    CAO Anye,JING Guangcheng,DOU Linming,et al. Damage evolution law based on acoustic emission of sandy mudstone under different uniaxial loading rate[J]. Journal of Mining & Safety Engineering,2015,32(6):923−928,935.
    [19]
    王 斌,李夕兵. 单轴荷载下饱水岩石静态和动态抗压强度的细观力学分析[J]. 爆炸与冲击,2012,32(4):423−431.

    WANG Bin,LI Xibing. Micromechanical analysis of static and dynamic compressive strength of water saturated rock under uniaxial load[J]. Explosion and Shock Waves,2012,32(4):423−431.
    [20]
    滕 腾,杜玉冰,陈朋飞,等. 砂岩变形率与水理效应的力学特性研究[J]. 矿业科学学报,2020,5(3):342−352.

    TENG Teng,DU Yubing,CHEN Pengfei,et al. Effects of deformation rate and hydrated condition on the mechanical property of sandstone[J]. Journal of mining science and technology,2020,5(3):342−352.
    [21]
    张连英,张树娟,茅献彪,等. 加载速率对煤系泥岩脆-延性转变影响的试验研究[J]. 采矿与安全工程学报,2018,35(2):391−396,401.

    ZHANG Lianying,ZHANG Shujuan,MAO Xianbiao,et al. Experimental research of influence of loading rate on brittle-ductile transition of mudstone in coal rock strata[J]. Journal of Mining & Safety Engineering,2018,35(2):391−396,401.
    [22]
    王登科,刘淑敏,魏建平,等. 冲击破坏条件下煤的强度型统计损伤本构模型与分析[J]. 煤炭学报,2016,41(12):3024−3031.

    WANG Dengke,LIU Shumin,WEI Jianping,et al. Analysis and strength statistical damage constitutive model of coal under impacting failure[J]. Journal of China Coal Society,2016,41(12):3024−3031.
    [23]
    OHTSU M. , ISODA T, TOMODA Y. Acoustic emission techniques standardized for concrete structures[J]. Journal of Acoustic Emission,2007,25:21−32.
    [24]
    王云飞, 刘 晓, 王立平, 等. 加载速率和饱水对砂岩力学行为和微观损伤特征的影响[J]. 采矿与安全工程学报, 2022, 39(2): 421−428.

    WANG Yunfei, LIU Xiao, WANG Liping, et al. Coupling effect of loading rate and saturated water on mechanical behavior and micro damage property of sandstone. [J] Journal of Mining & Safety Engineering, 2022, 39(2): 421−428.
    [25]
    朱 星, 唐 垚, 范 杰, 等. 基于临界慢化理论的细砂岩破坏前兆试验研究[J]. 岩石力学与工程学报, 2022, 41(1): 53−61.

    ZHU Xing, TANG Yao, FAN Jie, et al. Experimental study on failure precursors of fine sandstone based on critical slowing down theory[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(1): 53−61.
    [26]
    LIU Wenjie, YANG Ke, WEI Zhen, et al. Energy dissipation and failure characteristics of layered composite rocks under impact load. Shock and Vibration, 2021, Article ID8775338, Https://doi.org/10.1155/2021/8775338.
    [27]
    陈光波, 滕鹏程, 张国华, 等. 不同加载速率下煤岩组合体碎块分形特征与能量传递机制[J]. 重庆大学学报, 2022, 45(8): 115−129.

    CHEN Guangbo, TENG Pengcheng, ZHANG Guohua, et al. Fractal characteristics and energy transfer mechanism of coal-rock combined body fragments under different loading rates[J]. Journal of Chongqing University, 2022, 45(8): 115−129.
    [28]
    肖晓春, 金 晨, 丁 鑫, 等. 基于声发射时频特征的不同含水煤样冲击倾向试验研究[J]. 煤炭学报, 2018, 43(4): 931−938.

    XIAO Xiaochun, JIN Chen, DING Xin, et al. Experimental study on rock burst tendency of coal with different moisture content based on acoustic emission time-frequency signals[J]. Journal of China Coal Society, 2018, 43(4): 931−938.
    [29]
    肖晓春, 金 晨, 吴 迪, 等. 含水煤体冲击倾向及声-电荷时频特征试验[J]. 中国安全科学学报, 2017, 27(11): 103−108.

    XIAO Xiaochun, JIN Chen, WU Di, et al. Experimental study on burst tendency of water-bearing coal and its acoustic emission-charge time frequency domain signal characteristics[J]. China Safety Science Journal, 2017, 27(11): 103−108.
    [30]
    梁 冰,田 蜜,王俊光. 不同含水状态对坚硬煤层冲击倾向性影响研究[J]. 水资源与水工程学报,2014,25(1):100−102.

    LIANG Bing,TIAN Mi,WANG Junguang. Effect of different water contents on bursting potential of hard coal seam[J]. Journal of Water Resources and Water Engineering,2014,25(1):100−102.
    [31]
    李宝富, 齐利伟, 任永康, 等. 千秋煤矿煤的单轴抗压强度与冲击能量指数关系[J]. 煤炭工程, 2011(12): 68−70.

    LI Baofu, QI Liwei, REN Yongkang, et al. Relationship between uniaxial compressive strength and impact energy index of coal in qianqiu mine[J]. Coal Engineering, 2011(12): 68−70.
    [32]
    李海涛, 宋 力, 周宏伟, 等. 率效应影响下煤的冲击特性评价方法及应用[J]. 煤炭学报, 2015, 40(12): 2763−2771.

    LI Haitao, SONG Li, ZHOU Hongwei, et al. Evaluation method and application of coal burst performance under the effect of loading rate[J]. Journal of China Coal Society, 2015, 40(12): 2763−2771.
    [33]
    LI H B,ZHAO J,LI T J. Micromechanical modelling of themechanical properties of a granite under dynamic uniaxial compressive loads[J]. International Journal of Rock Mechanics and Mining Sciences,2000,37(6):923−935. doi: 10.1016/S1365-1609(00)00025-3
    [34]
    王海龙,李庆斌. 饱和混凝土静动力抗压强度变化的细观力学机理[J]. 水利学报,2006,37(8):958−962.

    WANG Hailong,LI Qingbin. Micro-mechanism of static and dynamic strengths for saturated concrete[J]. Journal of Hydraulic Engineering,2006,37(8):958−962.
    [35]
    孔晓璇. 单裂隙水流对岩体裂隙法向刚度的影响研究[J]. 地下空间与工程学报,2016,12(6):1491−1496.

    KONG Xiaoxuan. Influence of single fracture flow on the rock fissures normal stiffness[J]. Chinese Journal of Underground Space and Engineering,2016,12(6):1491−1496.
  • Cited by

    Periodical cited type(7)

    1. 杨科,许日杰,张杰,池小楼,刘文杰,郑诗章,刘旺军. 含瓦斯煤力学特性及其破坏风险等级预测模型. 采矿与安全工程学报. 2025(02): 404-417 .
    2. 许庆钊,史文豹,常聚才,苗壮,闫澳运,李传明,齐潮. 不同加载速率含水煤样力学响应及宏微观破坏机制研究. 岩土力学. 2025(03): 881-893 .
    3. 夏文韬,杨科,何祥,张连富,侯永强. 不同粒组骨料对矸石胶结充填体力学特性及破坏特征的影响. 中国矿业. 2025(05): 206-213 .
    4. 徐珂,鞠玮,张辉,梁艳,尹国庆,王志民,徐浩然,张玮,梁景瑞. 塔里木盆地库车坳陷白垩系巴什基奇克组致密砂岩力学性质影响因素及其变化规律. 石油实验地质. 2024(04): 823-832 .
    5. 吕鑫,何祥,杨科,方珏静,张寨男. 地下水库真实水压环境下坝体试件力学响应与破坏特征. 岩石力学与工程学报. 2024(09): 2214-2224 .
    6. 党嘉鑫,涂敏,张向阳,赵庆冲. 动载冲击煤样压–拉渐进破坏特征与能量演化试验研究. 岩石力学与工程学报. 2024(10): 2520-2539 .
    7. 杨科,郑诗章,刘文杰,许日杰,张寨男,刘帅,池小楼. 循环冲击荷载作用下煤岩组合体力学响应和能量耗散特征研究. 振动与冲击. 2024(20): 150-161 .

    Other cited types(6)

Catalog

    Article views (77) PDF downloads (34) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return