AN Baifu,YI Qiaomei,ZHAO Xiang,et al. Experimental research on low and strength characteristics of coal slime based cemented filling material[J]. Coal Science and Technology,2024,52(S1):13−21
. DOI: 10.13199/j.cnki.cst.2022-1733Citation: |
AN Baifu,YI Qiaomei,ZHAO Xiang,et al. Experimental research on low and strength characteristics of coal slime based cemented filling material[J]. Coal Science and Technology,2024,52(S1):13−21 . DOI: 10.13199/j.cnki.cst.2022-1733 |
To study the flow and strength characteristics of coal slime based backfill materials, orthogonal tests were used to design one cemented backfill material combining coal slime, high-water-content materials, cement, and fly ash. By using range, analysis of variance, and multi-variate regression analysis, influences of four key factors on the initial setting time, bleeding ratio, diffusivity, compressive strength, and shear strength of the backfill material were studied. These four factors include coal slurry water mass per cent concentration (A), high water material mass / slurry water mass (B), cement mass / slurry water mass (C) and fly ash mass / slurry water mass (D). Results show that initial setting time, diffusivity, compressive strength, and shear strength of the backfill material are 52−67 min, 42.0−76.5 cm, 0.076−0.247 MPa, and 0.033−0.139 MPa, respectively, all distributed in wide ranges. For initial setting time, the four factors are listed in a descending order asB>C>A>Daccording to their influences; for the compressive strength, the four factors are ranked asD>C>A>B; for the shear strength, the four factors are listed in an order asC>D>A>B. Mathematical equations betweenA,B,C,Dand initial setting time, diffusivity, compressive strength, and shear strength were gotten, initial setting time andA,Bpresents quadratic function relation, andC,Dpresent exponential relation; diffusivity andA,B,Cpresents quadratic function relation, andDpresents trigonometric relation; compressive strength andA,Dpresents exponential relation, andB,Cpresents quadratic function relation; shear strength andA,Bpresents quadratic function relation, andC,Dpresents exponential relation.One prediction model for characteristic parameters, namely, fluidity and strength, of the coal slime based backfill material under action of various factors was established and calibrated.
[1] |
郑丽辉,周跃进,张雷鸣,等. 矸石聚合物充填材料承载特性试验研究[J]. 煤炭科学技术,2022,50(9):222−229.
ZHENG Lihui,ZHOU Yuejin,ZHANG Leiming,et al. Experimental research on load-bearing characteristics of gangue polymer backfilling material[J]. Coal Science and Technology,2022,50(9):222−229.
|
[2] |
林海飞,翟雨龙,李树刚,等. 基于正交设计的“固-气”耦合相似材料力学与渗透特性试验研究[J]. 煤炭学报,2016,41(3):672−679.
LIN Haifei,ZHAI Yulong,LI Shugang,et al. Research on mechanics and permeability characteristics of similar material of solid-gas coupling based on orthogonal design[J]. Journal of China Coal Society,2016,41(3):672−679.
|
[3] |
常庆粮,袁崇亮,王永忠,等. 膏体充填综采台阶煤壁稳定性半凸力学分析[J]. 中国矿业大学学报,2022,51(1):46−55. doi: 10.3969/j.issn.1000-1964.2022.1.zgkydxxb202201005
CHANG Qingliang,YUAN Chongliang,WANG Yongzhong,et al. Semi-convex mechnical analysis on stability of step coal wall in fully mechanized mining with paste filling[J]. Journal of China University of Mining and Technology,2022,51(1):46−55. doi: 10.3969/j.issn.1000-1964.2022.1.zgkydxxb202201005
|
[4] |
黄 鹏,张吉雄,郭宇鸣,等. 深部矸石充填体黏弹性效应及顶板时效变形特征[J]. 中国矿业大学学报,2021,50(3):489−497.
HUANG Peng,ZHANG Jixiong,GUO Yuming,et al. Viscoelastic effect of deep gangue backfill body and time-dependent deformation characteristics of roof in deep mining[J]. Journal of China University of Mining and Technology,2021,50(3):489−497.
|
[5] |
秦海忠,李 佳. 氟石膏基新型膏体充填材料配比试验研究[J]. 有色金属工程,2022,12(9):144−153. doi: 10.3969/j.issn.2095-1744.2022.09.020
QIN Haizhong,LI Jia. Study on the proportion of a new fluorgypsum-based paste filling material[J]. Nonferrous Metals Engineering,2022,12(9):144−153. doi: 10.3969/j.issn.2095-1744.2022.09.020
|
[6] |
刘铁军,万擎宇,许高锋. 某铅锌矿全尾膏体充填工艺的选择及分析[J]. 有色冶金设计与研究,2022,43(4):1−4. doi: 10.3969/j.issn.1004-4345.2022.04.001
LIU Tiejun,WAN Qingyu,XU Gaofeng. Selection and analysis of unclassified tailings paste filling process for a lead-zinc mine[J]. Nonferrous Metals Engineering and Research,2022,43(4):1−4. doi: 10.3969/j.issn.1004-4345.2022.04.001
|
[7] |
轩召军,常庆粮. 膏体充填开采底板破坏机理及分区治理技术[J]. 煤矿安全,2022,53(8):210−217.
XUAN Zhaojun,CHANG Qingliang. Study on floor failure mechanism of paste backfill mining and division area control technology[J]. Safety in Coal Mines,2022,53(8):210−217.
|
[8] |
余伟健,万 幸,刘芳芳,等. 红土膏体充填材料及其物理特性试验研究[J]. 煤炭科学技术,2021,49(2):61−68.
YU Weijian,WAN Xing,LIU Fangfang,et al. Experimental study on red clay paste backfilling material and its physical characteristics[J]. Coal Science and Technology,2021,49(2):61−68.
|
[9] |
孙希奎. “三下”采煤膏体充填开采技术研究[J]. 煤炭科学技术,2021,49(2):61−68.
SUN Xikui. Research on paste backfilling mining technology of coal mining under buildings,water bodies and railways[J]. Coal Science and Technology,2021,49(2):61−68.
|
[10] |
王永岩,于卓群,崔立桩. 不同含水率膏体充填材料的单轴压缩试验研究[J]. 煤炭科学技术,2022,50(6):219−224.
WANG Yongyan,YU Zhuoqun,CUI Lizhuang. Experimental stsudy on compressive behavior of cemented paste backfilling material with different water contents[J]. Coal Science and Technology,2022,50(6):219−224.
|
[11] |
郝 喆. 小窑采空区地质灾害综合评价研究[J]. 地质与资源,2019,28(4):394−400. doi: 10.3969/j.issn.1671-1947.2019.04.014
HAO Zhe. Comprehensive assessment on the geological disasters in small pit goaf[J]. Geology and Resources,2019,28(4):394−400. doi: 10.3969/j.issn.1671-1947.2019.04.014
|
[12] |
冯国瑞,侯水云,梁春豪,等. 复杂条件下遗煤开采岩层控制理论与关键技术研究[J]. 煤炭科学技术,2020,48(1):144−149.
FENG Guorui,HOU Shuiyun,LIANG Chunhao,et al. Basic theories and key technologies of rock strata control for residual coal resources mining under complex conditions[J]. Coal Science and Technology,2020,48(1):144−149.
|
[13] |
冯国瑞,李庆东,戚庭野,等. 超声波法评价矸石膏体的静态抗离析性能[J]. 采矿与安全工程学报,2020,37(6):1231−1237.
FENG Guorui,LI Qingdong,QI Tingye,et al. Assessing static stability of cemented coal gangue backfill with ultrasonic pulse velocity method[J]. Journal of Mining and Safety Engineering,2020,37(6):1231−1237.
|
[14] |
毋林林,康天合,尹 博,等. 粉煤灰膏体充填材料水化放热特性的微量热测试与分析[J]. 煤炭学报,2015,40(12):2801−2806.
WU Linlin,KANG Tianhe,YIN Bo,et al. Microcalorimetric test and analysis of hydration heat of fly ash paste-filling material[J]. Journal of China Coal Society,2015,40(12):2801−2806
|
[15] |
刘鹏亮,张华兴,崔 锋,等. 风积砂似膏体机械化充填保水采煤技术与实践[J]. 煤炭学报,2017,42(1):118−126.
LIU Pengliang,ZHANG Huaxing,CUI Feng,et al. Technology and practice of mechanized backfill mining for water protection with aeolian sand paste-like[J]. Journal of China Coal Society,2017,42(1):118−126.
|
[16] |
邵小平,陶叶青,刘二帅,等. 陕北浅埋煤层似膏体充填条带开采参数研究及应用[J]. 煤炭科学技术,2021,49(7):63−70.
SHAO Xiaoping,TAO Yeqing,LIU Ershuai,et al. Study and application of paste-like filling mining parameters of shallow buried coal seam in Northern Shaanxi[J]. Coal Science and Technology,2021,49(7):63−70.
|
[17] |
朱建明,马中文,徐金海,等. 小煤窑采空区充填材料及复采技术研究[J]. 金属矿山,2012(3):10−14. doi: 10.3969/j.issn.1001-1250.2012.03.003
ZHU Jianming,MA Zhongwen,XU Jinhai,et al. Study on goaf filling material of small coal mine and repeated mining[J]. Metal Mine,2012(3):10−14. doi: 10.3969/j.issn.1001-1250.2012.03.003
|
[18] |
周保精,徐金海,吴 锐,等. 特厚煤层小窑采空区充填复采技术研究与应用[J]. 采矿与安全工程学报,2012,29(3):317−321.
ZHOU Baojing,XU Jinhai,WU Rui,et al. Research on filling repeated mining technology in small pit goaf in extremely thick coal seam and its application[J]. Journal of Mining and Safety Engineering,2012,29(3):317−321.
|
[19] |
李永刚. 综放工作面过小窑采空区注浆充填技术应用[J]. 河北煤炭,2009,(5):3−4,17.
LI Yonggang. Application of the grouting filling technology in goaf on fully mechanized top coal cavingmining face through the large coalpit[J]. Hebei Coal,2009,(5):3−4,17.
|
[20] |
白锦文,崔博强,戚庭野,等. 关键柱柱旁充填岩层控制基础理论[J]. 煤炭学报,2021,46(2):424−438.
BAI Jinwen,CUI Boqiang,QI Tingye,et al. Fundamental theory for rock strata control of key pillar-side backfilling[J]. Journal of China Coal Society,2021,46(2):424−438.
|
[21] |
彭广虎,祁传西,赵孔友. 基于CFB发电技术的煤泥及矸石利用途径探讨[J]. 煤炭工程,2017,49(S1):56−60,66.
PENG Guanghu,QI Chuanxi,ZHAO Kongyou. Discussion on utilization approach of coal slime and gangue based on CFB power technology[J]. Coal Engineering,2017,49(S1):56−60,66.
|
[22] |
任瑞晨,胡秀明,李彩霞,等. 动力煤煤泥处理及利用现状[J]. 贵州大学学报(自然科学版),2021,38(5):1−6.
REN Ruichen,HU Xiuming,LI Caixia,et al. Treatment and utilization of steam coal slime[J]. Journal of Guizhou University(Natural Sciences),2021,38(5):1−6.
|
[23] |
王瑞斌. 煤泥燃烧资源化利用现状及展望[J]. 洁净煤技术,2021,27(S2):23−26.
WANG Ruibin. Present situation and prospect of coal slurry combustion as a resource[J]. Clean Coal Technology,2021,27(S2):23−26.
|
[24] |
王栋达. 煤泥基预充填胶结材料力学特性研究及应用[D]. 湘潭:湖南科技大学,2022.
WANG Dongda. Mechanical properties of coal slime based pre filling cementitious material and its application[D]. Xiangtan:Hunan University of Mining and Technology,2022.
|
[25] |
孙恒虎,刘文永. 高水固结充填采矿[M]. 北京:机械工业出版社,1998.
SUN Henghu,LIU Wenyong. High-water cemented material backfilling mining[M]. Beijing:China Machine Press,1998.
|
1. |
宋世杰, 成星, 白莉, 刘露, 李源红, 张家杰, 陈宝灯. 黄河中游陕北煤矿区黄土沉陷坡面土壤入渗特性变化规律及其侵蚀效应. 西北大学学报(自然科学版). 2025(03)
![]() | |
2. |
王新雷,刘双峰. 黄土干湿循环作用下力学特性研究. 价值工程. 2025(14): 44-46 .
![]() | |
3. |
宋世杰,彭芮思,左靖,刘露,陈宝灯. 陕北煤矿区采动地裂缝对土壤抗蚀性的影响规律研究. 煤炭科学技术. 2024(02): 378-393 .
![]() | |
4. |
贾路,李占斌,于坤霞,李鹏,徐国策,丛佩娟,李斌斌. 基于径流侵蚀功率的长江典型流域能沙关系模型及改进. 农业工程学报. 2024(05): 128-140 .
![]() | |
5. |
宋世杰,张家杰,杨帅,刘志坚,江宁,陈平,刘汉斌,魏江波,刘露,陈宝灯,李源红. 黄河上中游采煤沉陷区水土流失效应的探索与思考. 绿色矿山. 2024(02): 169-182 .
![]() | |
6. |
宋世杰,冯泽煦,孙涛,郑贝贝,魏江波. 陕北采煤沉陷区黄土坡面形变与土壤侵蚀效应. 西安科技大学学报. 2023(02): 301-311 .
![]() | |
7. |
赵茜茜,赵永华. 秦岭地区土壤侵蚀时空间格局分析研究. 农业与技术. 2023(21): 103-106 .
![]() | |
8. |
宋世杰,王艺,彭芮思,张玉玲,唐利君,程霞. 陕北不同地貌类型区采煤沉陷对土壤微生物和酶活性的影响. 煤炭科学技术. 2023(12): 110-124 .
![]() |