Advance Search

ZHU Lei,GU Wenzhe,SONG Tianqi,et al. Research progress and prospect of coal gangue slurry backfilling technology in goaf[J]. Coal Science and Technology,2023,51(2):143−154

. DOI: 10.13199/j.cnki.cst.2022-1725
Citation:

ZHU Lei,GU Wenzhe,SONG Tianqi,et al. Research progress and prospect of coal gangue slurry backfilling technology in goaf[J]. Coal Science and Technology,2023,51(2):143−154

. DOI: 10.13199/j.cnki.cst.2022-1725

Research progress and prospect of coal gangue slurry backfilling technology in goaf

Funds: 

Major Science and Technology Project of China Coal Energy Group Co., Ltd. (ZMYXM·JT-22-02)

More Information
  • Received Date: October 19, 2022
  • Available Online: April 20, 2023
  • Coal gangue slurry backfilling is an important technical means of harmless large-scale disposal of gangue under low disturbance conditions, and is one of the important ways to achieve green coal mining, in line with the national green development concept. But for the preparation, long-distance transportation, and goaf disposal of the slurry backfilling material and other aspects of the research is still imperfection, part of the problem of research is still blank, seriously restricting the development of slurry backfilling technology in the field of coal gangue solid waste disposal. Through recent years, coal gangue slurry backfilling in the basic theory and key technology has made a lot of results. The article systematically composes a variety of coal gangue backfilling solid waste disposal technology and its development history, summarizes its applicability and advantages and disadvantages, elaborates the technical background and scientific connotation of the birth of slurry backfilling, and clarifies the key technology and process principle of slurry backfilling. From the perspective of large-scale promotion and application, the three key scientific issues of precise preparation and rheological characteristics of slurry backfilling materials, long-distance pipeline transport characteristics of gangue slurry, spatial dynamic evolution of goaf and the law of slurry intervention have been summarized, and research on precise slurry production technology, pipeline transport technology, and multi-position backfilling technology of slurry has been focused around the above key scientific issues. The rheological characteristics of gangue slurry under multi-factor coupling conditions are analyzed, the mechanism of gangue slurry formation is revealed, the precise preparation model of gangue slurry is constructed, the determination method of key parameters of gangue slurry pipeline transportation is proposed, and the flow and diffusion laws of three forms of slurry-high, low and adjacent are summarized, which in turn to guide the slurry backfilling engineering practice. Based on the above research, the shortcomings and the focus of the future research of the current research on slurry backfilling technology are analyzed, and the development trend of coal gangue slurry backfilling technology under the background of Dual Carbon has prospected, and the following three directions are considered to be the focus of future research: ①mineralized CO2 preparation of carbon-negative slurry technology; ②slurry reconstruction rock layer technology based on MICP technology; ③slurry replacement fluidized mining technology for hard-to-mine coal bodies.

  • [1]
    刘 峰,郭林峰,赵路正. 双碳背景下煤炭安全区间与绿色低碳技术路径[J]. 煤炭学报,2022,47(1):1−15.

    LIU Feng,GUO Linfeng,ZHAO Luzheng. Research on coal safety range and green low-carbon technology path under the dual-carbon background[J]. Journal of China Coal Society,2022,47(1):1−15.
    [2]
    王国法,任世华,庞义辉,等. 煤炭工业“十三五”发展成效与“双碳”目标实施路径[J]. 煤炭科学技术,2021,49(9):1−8. doi: 10.13199/j.cnki.cst.2021.09.001

    WANG Guofa,REN Shihua,PANG Yihui,et al. Development achievements of China's coal industry during the 13th Five-Year Plan period and implementation path of“dual carbon”target[J]. Coal Science and Technology,2021,49(9):1−8. doi: 10.13199/j.cnki.cst.2021.09.001
    [3]
    谢和平,王金华,王国法,等. 煤炭革命新理念与煤炭科技发展构想[J]. 煤炭学报,2021,49(5):1−8. doi: 10.13225/j.cnki.jccs.2018.0517

    XIE Heping,WANG Jinhua,WANG Guofa,et al. New ideas of coal revolution and layout of coal science andtechnology development[J]. Journal of China Coal Society,2021,49(5):1−8. doi: 10.13225/j.cnki.jccs.2018.0517
    [4]
    齐 晔. 低碳发展的中国逻辑: 煤炭消费达峰是前提[J]. 环境经济,2017(16):16−20.

    QI Ye. The logic of low carbon development: The peak of coal consumption is the premise[J]. Environmental Economy,2017(16):16−20.
    [5]
    彭苏萍,张 博,王 佟. 我国煤炭资源“井”字形分布特征与可持续发展战略[J]. 中国工程科学,2015,17(9):29−35. doi: 10.3969/j.issn.1009-1742.2015.09.006

    PENG Suping,ZHANG Bo,WANG Tong. China’s coal resources: Octothorpe shaped distribution characteristics and sustainable devel-opment strategies[J]. Engineering Sciences,2015,17(9):29−35. doi: 10.3969/j.issn.1009-1742.2015.09.006
    [6]
    李泽红,柏永青,孙九林,等. 西部生态脆弱贫困区生态文明建设战略研究[J]. 中国工程科学,2019,21(5):80−86. doi: 10.15302/J-SSCAE-2019.05.012

    LI Zehong,BAI Yongqing,SUN Jiulin,et al. Ecological civilization construction in ecologically fragile poverty-stricken areas in Western China[J]. Chinese Engineering Science,2019,21(5):80−86. doi: 10.15302/J-SSCAE-2019.05.012
    [7]
    中华人民共和国中央人民政府. 中华人民共和国固体废物污染环境防治法[EB/OL]. [2020-04-30]/(2022-09-25). http://www.gov.cn/xinwen/2020-04/30/content_5507561.htm.
    [8]
    全国人民代表大会, 中华人民共和国民法典[EB/OL]. [2020-06-01]/(2022-09-25).http://www.gov.cn/xinwen/2020-06/01/content_5516649.htm.
    [9]
    王双明,申艳军,孙 强,等. 西部生态脆弱区煤炭减损开采地质保障科学问题及技术展望[J]. 采矿与岩层控制工程学报,2020,2(4):5−19.

    WANG Shuangming,SHEN Yanjun,SUN Qiang,et al. Scientific issues of coal detraction mining geological assurance and their technology expectations in ecologically fragile mining areas of Western China[J]. Journal of Mining and Strata Control Eenineering,2020,2(4):5−19.
    [10]
    王双明,段中会,马 丽,等. 西部煤炭绿色开发地质保障技术研究现状与发展趋势[J]. 煤炭科学技术,2019,45(2):1−6. doi: 10.13199/j.cnki.cst.2019.02.001

    WANG Shuangming,DUAN Zhonghui,MA Li,et al. Research status and future trends of geological assurance technology for coal greendevelopment in Western China[J]. Coal Science and Technology,2019,45(2):1−6. doi: 10.13199/j.cnki.cst.2019.02.001
    [11]
    王双明. 鄂尔多斯盆地聚煤规律及煤炭资源评价[M]. 北京: 煤炭工业出版社, 1996.
    [12]
    朱玉高. 陕北煤矿区农田土壤重金属污染现状及修复研究[J]. 洁净煤技术,2014,20(5):105−108. doi: 10.13226/j.issn.1006-6772.2014.05.026

    ZHU Yugao. Contamination and control of heavy metals in farmland around coal mining area in Northern Shaanxi[J]. Clean Coal Technology,2014,20(5):105−108. doi: 10.13226/j.issn.1006-6772.2014.05.026
    [13]
    刘建功,李新旺,何 团. 我国煤矿充填开采应用现状与发展[J]. 煤炭学报,2020,45(1):141−150. doi: 10.13225/j.cnki.jccs.YG19.1063

    LIU Jiangong,LI Xinwang,HE Tuan,et al. Application status and prospect of backfill mining in Chinese coal mines[J]. Journal of China Coal Society,2020,45(1):141−150. doi: 10.13225/j.cnki.jccs.YG19.1063
    [14]
    许家林. 煤矿绿色开采20年研究及进展[J]. 煤炭科学技术, 2020, 48(9): 1-15.

    XU Jialin. Research and progress of coal mine green mining in 20 years. [J]. Coal Science and Technology, 2020, 48(9): 1-15.
    [15]
    杨胜利,白亚光,李 佳. 煤矿充填开采的现状综合分析与展望[J]. 煤炭工程,2013,45(10):4−6. doi: 10.11799/ce201310002

    YANG Shengli,BAI Yaguang,LI Jia. Comprehensive analysis onpresent status of mine backfill mining and prospects[J]. Coal Engineering,2013,45(10):4−6. doi: 10.11799/ce201310002
    [16]
    朱 磊,潘 浩,古文哲,等. 垮落带矸石浆体充填模拟试验研究[J]. 煤炭学报,2021,46(S2):629−638. doi: 10.13225/j.cnki.jccs.2021.0247

    ZHU Lei,PAN Hao,GU Wenzhe,et al. Experimental study on flow and diffusion law of gangue backfilling slurryin caving zone[J]. Journal of China Coal Society,2021,46(S2):629−638. doi: 10.13225/j.cnki.jccs.2021.0247
    [17]
    朱 磊,宋天奇,古文哲. 煤基固废浆体管道充填技术研究与应用[J]. 煤炭技术,2021,40(10):47−51. doi: 10.13301/j.cnki.ct.2021.10.011

    ZHU Lei,SONG Tianqi,GU Wenzhe. Research and application on pipeline backfill technology of slurrycomprsing coal-based solid waste[J]. Coal Technology,2021,40(10):47−51. doi: 10.13301/j.cnki.ct.2021.10.011
    [18]
    朱卫兵,许家林,赖文奇,等. 覆岩离层分区隔离注浆充填减沉技术的理论研究[J]. 煤炭学报,2007,32(5):458−462. doi: 10.3321/j.issn:0253-9993.2007.05.003

    ZHU Weibing,XU Jialin,LAI Wenqi,et al. Research of isolated section -grouting technology for overburden bed separation space to reduce subsidence[J]. Journal of China Coal Society,2007,32(5):458−462. doi: 10.3321/j.issn:0253-9993.2007.05.003
    [19]
    周华强,侯朝炯,孙希奎,等. 固体废物膏体充填不迁村采煤[J]. 中国矿业大学学报,2004,33(2):30−34, 53. doi: 10.3321/j.issn:1000-1964.2004.02.007

    ZHOU Huaqiang,HOU Chaojiong,SUN Xikui,et al. Solid waste paste backfilling for none-village-relocation coal mining[J]. Journal of China University of Mining & Technology,2004,33(2):30−34, 53. doi: 10.3321/j.issn:1000-1964.2004.02.007
    [20]
    缪协兴,张吉雄,郭广礼. 综合机械化固体充填采煤方法与技术研究[J]. 煤炭学报,2010,35(1):1−6. doi: 10.13225/j.cnki.jccs.2010.01.006

    MIAO Xiexing,ZHANG Jixiong,GUO Guangli,et al. Study on waste-backfilling method and technology in fully-mechanized coal mining[J]. Journal of China Coal Society,2010,35(1):1−6. doi: 10.13225/j.cnki.jccs.2010.01.006
    [21]
    吴 凡,杨发光,肖柏林,等. 基于扩展度表征高浓度混合骨料充填料浆流变特性及应用[J]. 中南大学学报(自然科学版),2022,53(8):3104−3112.

    WU Fan,YANG Faguang,XIAO Bolin,et al. Characterization of rheological property and its application of highconcentration and mixed aggregate backfilling slurry based on spread[J]. Journal of Central South University(Science and Technology,2022,53(8):3104−3112.
    [22]
    国家能源局. 煤矿充填开采工作指导意见[EB/OL]. [2013-01-09]/(2022-09-25). http://zfxxgk.nea.gov.cn/auto85/201302/t20130204_1580.htm.
    [23]
    国家发展改革委, 国家能源局. 能源技术革命创新行动计划(2016—2030年)[EB/OL].[2016-04-07]/(2022-09-25). http://www.nea.gov.cn/2016-06/01/c_135404377.htm.
    [24]
    国家发展改革委. 关于“十四五”大宗固体废弃物综合利用的指导意见[EB/OL]. [2021-03-18]/(2022-09-25).https://www.ndrc.gov.cn/xxgk/zcfb/tz/202103/t20210324_1270286.html.
    [25]
    杨晓炳. 低品质多固废协同制备充填料浆及其管输阻力研究[D]. 北京: 北京科技大学, 2020: 21-22.

    YANG Xiaobing. Study on the collaborative preparation of backfillingmaterials with low quality and multi-solid wastes and their pressure drop in pipeline transportation[D]. Beijing: University of Science and Technology Beijing, 2020: 21−22.
    [26]
    薛 娜. 超细铁尾砂充填料浆流变特性研究[D]. 唐山: 华北理工大学, 2020: 34-36.

    XUE Na. Study on rheological properties of superfine iron tailings backfilling slurry[D]. Tangshan: North China University of Science and Technology, 2020: 34-36.
    [27]
    范永亮,崔继强,张元坤,等. 混合粗骨料配比对充填体强度及浆体流动性能的影响规律[J]. 黄金科学技术,2022,30(2):263−271. doi: 10.11872/j.issn.1005-2518.2022.02.146

    FAN Yongliang,CUI Jiqiang,ZHANG Yuankun,et al. Influence of mixed coarse aggregate ratio on strength and fluidity of backfillingslurry[J]. Gold Science and Technolog,2022,30(2):263−271. doi: 10.11872/j.issn.1005-2518.2022.02.146
    [28]
    郝宇鑫,黄玉诚,李育松,等. 矸石似膏体充填料浆临界流速影响因素研究[J]. 煤炭工程,2022,54(4):128−133.

    HAO Yuxin,HUANG Yucheng,LI Yusong,et al. Influencing factors of critical flow rate of gangue paste-like filler slurry[J]. Coal Engineering,2022,54(4):128−133.
    [29]
    马 妍,陈家琪,门著铭,等. 管道输煤参数优化研究[J]. 煤炭工程,2017,49(5):107−111. doi: 10.11799/ce201705032

    MA Yan,CHEN Jiaqi,MEN Zhuming,et al. Optimization of coal pipeline transportation parameters[J]. Coal Engineering,2017,49(5):107−111. doi: 10.11799/ce201705032
    [30]
    甘德清,闫泽鹏,薛振林,等. 考虑壁面滑移效应的充填料浆管道输送阻力研究[J]. 金属矿山,2020(9):26−32. doi: 10.19614/j.cnki.jsks.202009003

    GAN Deqing,YAN Zepeng,XUE Zhenlin,et al. Study on the resistance of cemented paste backfill slurry pipeline transport consideringwall slip effect[J]. Metal Mine,2020(9):26−32. doi: 10.19614/j.cnki.jsks.202009003
    [31]
    蔡嗣经. 充填力学基础[M]. 北京: 治金工业出版社, 2009: 63-70.
    [32]
    杨天雨. 膏体管道输送边界层效应及阻力特性[D]. 昆明: 昆明理工大学, 2021: 137−164.

    YANG Tianyu. Boundary layer effect and resistance characteristics of paste pipeline transportation[D]. Kunming: Kunming University of Science and Technology, 2021: 137−164.
    [33]
    吴爱祥, 王洪江. 金属矿膏体充填理论与技术[M]. 北京: 科学出版社, 2015.
    [34]
    高 锋. 管径对全尾砂充填料浆管道输送特性影响研究[D]. 唐山: 华北理工大学, 2015: 43−44.

    GAO Feng. Study on affections of pipeline diameter to the transportation characteristics of backfilling slurry of unclassified tailings inner pipe[D]. Tangshan: North China University of Science and Technology, 2015: 43−44.
    [35]
    戴继岚,夏震寰. 悬移质与推移质分层管流的阻力特性[J]. 中国科学,1987(12):1328−1340.

    DAI Jilan,XIA Zhenhuan. Resistance characteristics of suspended and bedload stratified pipe flow[J]. China science,1987(12):1328−1340.
    [36]
    陈广文,古德生. 浆体水平管道输送阻力损失计算探讨[J]. 中南矿冶学院学报,1994,25(2):162−165.

    CHEN Guangwen,GU Desheng. Exploration of drag losses calculation inslurry horizontal pipeline transportation[J]. Central south Institute of Mining and Metallurgy,1994,25(2):162−165.
    [37]
    杜加法,刘晓光,王京生,等. 基于L管实验的全尾砂膏体流变特性研究[J]. 金属矿山,2020,8:20−24.

    DU Jiafa,LIU Xiaoguang,WANG Jingsheng,et al. Rheological properties of unclassified tailings paste slurry based on l-tube pipeline test[J]. Metal Mine,2020,8:20−24.
    [38]
    夏建新,倪晋仁,黄家桢. 锰结核在垂直管路输送过程中的压力损失[J]. 泥沙研究,2002(2):23−28. doi: 10.3321/j.issn:0468-155X.2002.02.004

    XIA Jianxin,NI Jinren,HUANG Jiazhen. Pressure loss in solid-liquid flow with coarse manganese nodules in vertical pipeline[J]. Journal of Sediment Research,2002(2):23−28. doi: 10.3321/j.issn:0468-155X.2002.02.004
    [39]
    吴爱祥,刘晓辉,王洪江,等. 结构流充填料浆管道输送阻力特性[J]. 中南大学学报(自然科学版),2014,45(12):4325−4330.

    WU Aixiang,LIU Xiaohui,WANG Hongjiang,et al. Resistance characteristics of structure fluid backfilling slurry in pipeline transport[J]. Journal of Central South University (Science and Technology),2014,45(12):4325−4330.
    [40]
    朱 磊,宋天奇,古文哲,等. 矸石浆体输送阻力特性及采空区流动规律试验研究[J]. 煤炭学报,2021,47(S1):39−48. doi: 10.13225/j.cnki.jccs.2021.1298

    ZHU Lei,SONG Tianqi,GU Wenzhe,et al. Experimental research on transport-resistance characteristics of gangue slurry and its flow trend in the goaf[J]. Journal of China Coal Society,2021,47(S1):39−48. doi: 10.13225/j.cnki.jccs.2021.1298
  • Related Articles

    [1]SUN Jiping, LI Xiaowei. Recognition method of depression degree in mine external fire images[J]. COAL SCIENCE AND TECHNOLOGY, 2025, 53(1): 341-355. DOI: 10.12438/cst.2025-0002
    [2]LU Wei, YE Wengang, LI Jinliang, QIAN Guanyu, ZHANG Qingsong, LI Jinhu. Research on advanced fire warning technology utilizing thermo-sensitive material modified conveyor belts[J]. COAL SCIENCE AND TECHNOLOGY, 2025, 53(1): 170-182. DOI: 10.12438/cst.2023-1733
    [3]PEI Xiaodong, HAO Haiqing, WANG Kai, JIANG Shuguang, SUN Yong, CHEN Jiahui, WU Zhengyan, JIANG Heguo, SHAO Hao. Research and application of fire air and smoke flow emergency control technology for mine complex ventilation network[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(5): 124-132. DOI: 10.13199/j.cnki.cst.2022-1787
    [4]QU Shijia, WU Fusheng, HE Yaoyi. Research on edge computing mode in coal mine safety monitoring and control system[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(5).
    [5]TANG Yibo, WANG Huae, FAN Qianru, LI Yuxin, ZHI Jingrong, LIANG Xi. Study on application potential of aerosol fire-extinguishing technology for prevention and control spontaneous combustion of coal in goaf[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (7).
    [6]Wen Hu Zhang Duo Zheng Xuezhao, . Study on numerical simulation and feature parameters of fire disasters occurred in mine roadway[J]. COAL SCIENCE AND TECHNOLOGY, 2017, (4).
    [7]Nie Baisheng Peng Bin Fan Penghong Wang Longkang Guo Hao Yu Hongyang Liu shuai Liu Xutao, . Design and key technology on early warning system of mine wireless safety monitoring[J]. COAL SCIENCE AND TECHNOLOGY, 2016, (7).
    [8]Liang Yuntao Hou Xianjun Luo Haizhu Tian Fuchao Yu Guisheng, . Development countermeasures and current situation of coal mine fire prevention & extinguishing in China[J]. COAL SCIENCE AND TECHNOLOGY, 2016, (6).
    [9]WU Wei-quan WEI Guo-shan LYU Ming-fei, . Mine Fire and Gas Control in High Gassy and Spontaneous Combustion Mine Based on Ventilation Quantity Adjustment[J]. COAL SCIENCE AND TECHNOLOGY, 2013, (9).
    [10]Mine Intelligent Fire Disaster Detection Method Based on Radial Basis Function Neural Network[J]. COAL SCIENCE AND TECHNOLOGY, 2011, (2).
  • Cited by

    Periodical cited type(30)

    1. 徐猛,刘正英. 基于大数据的矿山机电设备智能监控系统应用体现. 现代商贸工业. 2025(01): 28-30 .
    2. 马砺,高文博,拓龙龙,张鹏宇,郑州,郭睿智. 西蒙矿区深部开采煤自燃特性及预测方法研究. 煤田地质与勘探. 2025(02): 33-43 .
    3. 耿哲,张德胜. 煤矿井下区域防灭火系统的设计. 矿山机械. 2025(03): 50-55 .
    4. 李晓宇,范伟强,刘毅,霍跃华. 基于红外视觉特征融合的矿井外因火灾监测方法. 矿业科学学报. 2025(01): 116-124 .
    5. 莘勇刚,武丹宁,张金. 西露天矿综放工作面煤炭自然发火防治研究. 内蒙古煤炭经济. 2025(02): 47-49 .
    6. 孙继平,李小伟. 矿井外因火灾图像凹陷度识别方法. 煤炭科学技术. 2025(01): 341-355 . 本站查看
    7. 张超,崔飞,贺小良. 煤自燃气体产物特性和预测实验研究. 山东煤炭科技. 2025(02): 54-58 .
    8. 张鑫宇. 基于Comsol的储煤堆重力热管最佳布置方式研究. 煤. 2025(04): 9-13 .
    9. 王炎林,裴晓东,王凯,徐光. 基于双光谱成像技术的矿井早期火源识别及抗干扰方法研究. 工矿自动化. 2025(03): 122-130 .
    10. 叶正亮,郭曦蔓,尚博,胡冕. 煤变质程度对微观结构与热解参数的影响及关联性分析. 中国安全科学学报. 2025(02): 57-65 .
    11. 胡相明,洪海博,董浩,吴佰谦,孙自超,王伟,张茜. “测氡-磁”法探测小窑自然发火技术的应用研究. 煤炭科学技术. 2025(02): 200-210 . 本站查看
    12. 孔彪,钟建辉,陆伟,胡相明,高李阳,庄则栋,孙晓磊,时林超. 煤自燃过程中声波效应及前兆特征研究进展. 煤炭科学技术. 2025(02): 211-221 . 本站查看
    13. 夏承明,郭宗勇,陶化弟,杨艳群,李甲华,蔡涵. 隧道项目施工人员风险认知评估框架:基于虚拟现实与脑电信号的融合研究. 项目管理技术. 2025(04): 28-39 .
    14. 邓军,赵夏琦,王彩萍,任帅京,屈高阳,王津睿,豆龙辉. 煤欠氧氧化热动力学特性研究. 矿业安全与环保. 2025(02): 9-16 .
    15. 梁运涛,王伟. 矿井外因火灾监测预警与智能防控技术. 矿业安全与环保. 2025(02): 1-8 .
    16. 刘湘滢. 矿井智能通风研究进展及展望. 工矿自动化. 2025(04): 44-56 .
    17. 张鹏宇,马砺,石新慧,王少荣,李昭. 基于时序优化长短期记忆网络的采空区环境多参数预测. 中国矿业大学学报. 2025(03): 653-666 .
    18. 邓军,王津睿,任帅京,王彩萍,屈高阳,马砺. 采空区煤自燃高温点识别与探测技术研究与展望. 煤炭学报. 2024(02): 885-901 .
    19. 肖金凤. 基于AI的充电桩火灾预警系统的应用研究. 阀门. 2024(05): 639-642 .
    20. 孟祥宁,梁运涛,郭宝龙,孙勇,田富超. 卤盐阻化剂对煤自燃阻化作用的定量识别及机理. 煤炭科学技术. 2024(06): 132-141 . 本站查看
    21. 周建. 基于“一通三防”的矿井智能管控技术研究与应用. 中国煤炭. 2024(06): 59-66 .
    22. 李倓,赵恒泽,李晔,赵艺. 固体废弃物制备矿用防灭火复合凝胶研究进展. 煤炭科学技术. 2024(08): 96-105 . 本站查看
    23. 陈腾杰,李永安,张之好,林斌. 基于改进YOLOv8n+DeepSORT的带式输送机异物检测及计数方法. 工矿自动化. 2024(08): 91-98 .
    24. 薛凯隆,崔欣超,祁云,齐庆杰. 基于DBO-SVM的采空区煤自燃危险性预测. 沈阳理工大学学报. 2024(06): 85-90 .
    25. 贾海林 ,曾锦祥 ,潘荣锟 ,潘仕利 ,周凯旋 . 无氟泡沫灭火剂真火实验与分子动力学模拟. 化工学报. 2024(10): 3825-3834 .
    26. 陶强胜,李英明,王想君,范朝涛,郭德茂,段文聪. 基于OTDR的缠绕式光纤应变传感器研制及性能测试. 煤炭科学技术. 2024(11): 247-259 . 本站查看
    27. 生帅. 信息化监测技术在西部地区建井期间的应用. 建井技术. 2024(06): 19-24 .
    28. 杨书浩. 采空区火灾智能分析预警系统的设计与应用. 煤矿机电. 2024(06): 1-6 .
    29. 李金虎,黄珏洁,陆伟,徐天硕,汪洋. 煤中高活性含碳固体自由基与煤自燃反应性的相关关系. 煤炭科学技术. 2024(12): 127-142 . 本站查看
    30. 李起伟,李忠奎,陈建桥. 基于Wi-SUN的煤矿井下火灾监测及模糊分析方法研究. 工矿自动化. 2024(S2): 47-52 .

    Other cited types(14)

Catalog

    Article views PDF downloads Cited by(44)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return