Citation: | YU Bin,KUANG Tiejun,YANG Jingxuan,et al. Analysis of overburden structure and evolution characteristics of hard roof mining in extremely thick coal seam[J]. Coal Science and Technology,2023,51(1):95−104. DOI: 10.13199/j.cnki.cst.2022-1709 |
The mining of extremely thick coal seam form a large space stope, the fracture disturbance of hard roof spreads to a wide range, the working face weighting has the characteristic of “strong mine pressure”, it is obviously different from rock burst, especially when the coal seam roof “square” mining period, the stope mine pressure is more intense. Based on this, the disturbance height of overburden and fracture characteristics of hard roof in extremely thick coal seam mining are discussed by field measurement and 3D physical similarity simulation. Firstly, the fracturing law of overburden was analyzed based on the field measurement, the results showed that the hard roof was fractured advance the working face during the extra thick coal seams mining. The initial movement of the roof mainly revolved around the base point near the fault line and sinking, behind the working face for a certain distance. The observation results of ground sinking showed that the strata formed a roof groups and moved combined of extra thick coal seams, and there is a step phenomenon during strata movement. The study shows that the disturbance height of overburden in extremely thick coal seam mining is large and the fracture of hard roof has steering characteristics. With the advance of coal seam mining, the transverse “O-X” fracture of low roof layer gradually turns to the longitudinal “O-X” fracture of the high hard rock. The critical position of fracture turning of hard roof in extremely thick coal seam is the so-called “square” area of coal seam mining, which reasonably explains the phenomenon of “square” pressure in working face mining. The large longitudinal fracture size of the high roof and the wide range of disturbance influence are the main factors inducing the strong mine pressure in the stope. The rationality of the “low-medium-high” layer structure of the overburden in extremely thick coal seam after mining is determined, which provides a basis for the accurate interpretation of the large space stope size cycle and the strong mine pressure.
[1] |
匡铁军. 特厚煤层覆岩结构及远近场顶板控制技术研究[M]. 徐州: 中国矿业大学出版社, 2020: 1-3.
|
[2] |
于 斌,杨敬轩,刘长友,等. 大空间采场覆岩结构特征及其矿压作用机理[J]. 煤炭学报,2019,44(11):3295−3307.
YU Bin,YANG Jingxuan,LIU Changyou,et al. Overburden structure and mechanism of rock pressure in large space stope[J]. Journal of China Coal Society,2019,44(11):3295−3307.
|
[3] |
朱卫兵,于 斌. 大空间采场远场关键层破断形式及其对矿压显现的影响[J]. 煤炭科学技术,2018,46(1):99−104.
ZHU Weibing,YU Bin. Breakage form and its effect on strata behavior of far field key stratum in large space stope[J]. CoaI Science and Technology,2018,46(1):99−104.
|
[4] |
孔令海. 特厚煤层大空间综放采场覆岩运动及其来压规律研究[J]. 采矿与安全工程学报,2020,37(5):943−950.
KONG Linghai. Overlying strata movement law and its strata pressure mechanism in fully mechanized top-coal caving workface with large space[J]. Journal of Mining & Safety Engineering,2020,37(5):943−950.
|
[5] |
于 斌,夏彬伟,喻 鹏. 特厚煤层综放开采坚硬顶板破断对瓦斯涌出影响[J]. 煤炭学报,2018,43(8):2243−2249.
YU Bin,XIA Binwei,YU Peng. Effect of hard roof breaking on gas emission in fully-mechanized sublevel caving mining of extremely thick coal seam[J]. Journal of China Coal Society,2018,43(8):2243−2249.
|
[6] |
王 君,朱卫兵,谢建林. 特厚煤层充分采动覆岩下沉规律研究[J]. 工矿自动化,2021,47(10):21−26.
WANG Jun,ZHU Weibing,XIE Jianlin. Research on subsidence law of overlying strata in full mining of extra-thick coal seam[J]. Industry and Mine Automation,2021,47(10):21−26.
|
[7] |
于 斌,朱卫兵,李 竹,等. 特厚煤层开采远场覆岩结构失稳机理[J]. 煤炭学报,2018,43(9):2398−2407.
YU Bin,ZHU Weibing,LI Zhu,et al. Mechanism of the instability of strata structure in far field for super-thick coal seam mining[J]. Journal of China Coal Society,2018,43(9):2398−2407.
|
[8] |
于 斌,杨敬轩,高 瑞. 大同矿区双系煤层开采远近场协同控顶机理与技术[J]. 中国矿业大学学报,2018,47(3):486−493.
YU Bin,YANG Jingxuan,GAO Rui. Mechanism and technology of roof collaborative controlling in the process of Jurassic and Carboniferous coal mining in Datong mining area[J]. Journal of China University of Mining & Technology,2018,47(3):486−493.
|
[9] |
于 斌,刘长友,杨敬轩,等. 坚硬厚层顶板的破断失稳及其控制研究[J]. 中国矿业大学学报,2013,42(3):342−348.
YU Bin,LIU Changyou,YANG Jingxuan,et al. Research on the fracture instability and its control technique of hard and thick roof[J]. Journal of China University of Mining & Technology,2013,42(3):342−348.
|
[10] |
鞠金峰,许家林,刘阳军,等. 关键层运动监测及岩移5阶段规律:以红庆河煤矿为例[J]. 煤炭学报,2022,47(2):611−622.
JU Jinfeng,XU Jialin,LIU Yangjun,et al. Key strata movement monitoring during underground coal mining and its 5-stage movement law inversion: a case study in Hongqinghe Mine[J]. Journal of China Coal Society,2022,47(2):611−622.
|
[11] |
薛吉胜,赵铁林,潘黎明. “高位−低位”厚硬岩层综放面特厚煤层矿压显现特征研究[J]. 煤炭技术,2021,40(7):55−59.
XUE Jisheng,ZHAO Tielin,PAN Liming. Research on characteristics of underground pressure behavior of extra—thick coaI seams in “high-low” thick and hard rock layers in fuIIy mechanized caving working face[J]. Coal Technology,2021,40(7):55−59.
|
[12] |
任启寒,徐遵玉,陈 成. 特厚煤层综放采场覆岩结构及矿压规律研究[J]. 煤炭工程,2021,53(1):79−83.
REN Qihan,XU Zunyu,CHEN Cheng. Overburden structure and rock pressure law of fully-mechanized top coal caving stope in extra—thick coal seam[J]. Coal Engineering,2021,53(1):79−83.
|
[13] |
HE Fulian,LI Xiaobin,HE Wenrui,et al. The key stratum structure morphology of longwall mechanized top coal caving mining in extra-thick coal seams: A typical case study[J]. Advances in Civil Engineering,2020:1−13.
|
[14] |
朱卫兵,于 斌,鞠金峰,等. 采场顶板关键层“横U-Y”型周期破断特征的试验研究[J]. 煤炭科学技术,2020,48(2):36−43.
ZHU Weibing,YU Bin,JU Jinfeng,et al. Experimental study on horizontal “U-Y” periodical breakage characteristics of key strata in stope roof[J]. Coal Science and Technology,2020,48(2):36−43.
|
[15] |
何富连,何文瑞,陈冬冬,等. 考虑煤体弹−塑性变形的基本顶板初次破断结构特征[J]. 煤炭学报,2020,45(8):2704−2717.
HE Fulian,HE Wenrui,CHEN Dongdong,et al. First fracture structure characteristics of main roof plate considering elastic-plastic deformation of coal[J]. Journal of China Coal Society,2020,45(8):2704−2717.
|
[16] |
李 东,姜福兴,王存文,等. “见方效应”与“应力击穿效应”联动致灾机理及防治技术研究[J]. 采矿与安全工程学报,2018,35(5):1014−1021.
LI Dong,JIANG Fuxing,WANG Cunwen,et al. Study on the mechanism and prevention technology of “square position” and “stress breakdown effect” inducing rock burst[J]. Journal of Mining & Safety Engineering,2018,35(5):1014−1021.
|
[17] |
谭云亮,胡善超. 顶板见方来压发生条件分析研究[J]. 煤炭科学技术,2015,43(6):19−22.
TAN Yunliang,HU Shanchao. Analysis and study on condition to cause roof weighing in square meter[J]. Coal Science and Tecnology,2015,43(6):19−22.
|
[18] |
王书文,焦 彪. 采空区顶板见方垮落的覆岩空间结构特征及形成条件[J]. 中国煤炭,2014,40(10):43−48.
WANG Shuwen,JIAO Biao. Spatial structure features and formation conditions of square caving overlying strata in goaf roof[J]. Journal of China Coal,2014,40(10):43−48.
|
1. |
王文强, 李振华, 杜锋, 曹正正, 王伸, 马鸣啸. 上覆煤柱影响下顶板水气下泄通道演化特征研究. 采矿与安全工程学报. 2025(04)
![]() | |
2. |
马良玉. 虎龙沟煤矿综放工作面末采期间切顶护巷技术研究与应用. 煤. 2025(07)
![]() | |
3. |
邓雪杰,杨述鑫,谢中辉,张金魁,王文兴,张俊文,王斐. 错层位卸压开采结构中矸石垫层缓冲作用机制. 采矿与安全工程学报. 2025(01): 16-27 .
![]() | |
4. |
王明星,孙浩,于海涛,吴国栋. 厚煤层综放工作面覆岩破断及矿压显现规律分析. 煤炭技术. 2025(02): 52-56 .
![]() | |
5. |
王宏. 官地煤矿煤柱与硬地层对矿井压力的耦合效应分析. 能源技术与管理. 2025(01): 66-68+101 .
![]() | |
6. |
程浩,杨敬轩,解海军,张永波. 临涣煤矿761工作面末采期间的切顶护巷原理. 煤. 2025(03): 23-27+92 .
![]() | |
7. |
蒋邦友,李文帅,张宇,姜良金,任思安. 厚及特厚煤层开采煤层大巷失稳机理及控制研究. 采矿与安全工程学报. 2025(02): 333-344 .
![]() | |
8. |
高金波,景永嘉,赵军利,白伟,胡俊峰,吕玉柱,李军岐,冯博. 沿空留巷巷旁支护侧向荷载作用机理及减载控制技术. 煤炭工程. 2025(03): 115-125 .
![]() | |
9. |
余从,唐志刚,赵宏斌,唐龙,李海波. 厚硬关键层下邻空巷道分区支护技术与应用研究. 煤炭技术. 2025(06): 89-96 .
![]() | |
10. |
闫少宏,路洋波,尹希文,徐刚. 再论大采高采场顶板“组合短悬臂梁-铰接岩梁”定量化结构. 煤炭学报. 2025(04): 1894-1906 .
![]() | |
11. |
孙浩杰,徐青云,赵晓渝,李硕森. 同忻矿8311工作面坚硬顶板破断特征与矿压显现规律研究. 煤. 2024(02): 33-36+47 .
![]() | |
12. |
宋振骐,文志杰,蒋宇静,蒋金泉,石永奎. 采动力学与岩层控制关键理论及工程应用. 煤炭学报. 2024(01): 16-35 .
![]() | |
13. |
陆银龙,韩磊,吴开智,陆凌峰,田伟鹏,崔佐军. 特厚煤层沿空掘巷力源结构特征与围岩协同控制策略. 中国矿业大学学报. 2024(02): 238-249 .
![]() | |
14. |
朱乐章,杨敬轩,王举文,卢硕,黄北海. 朱仙庄煤矿特厚煤层变间距覆岩坚硬顶板控制技术. 矿业研究与开发. 2024(04): 84-90 .
![]() | |
15. |
刘洪涛,罗紫龙,韩子俊,韩洲,陈小港,彭佳琛. 厚煤层大采高综放工作面覆岩断裂演化规律研究. 煤炭科学技术. 2024(03): 1-12 .
![]() | |
16. |
郑凯歌,王林涛,王永福. 坚硬顶板强矿压动力灾害超前区域控制技术研究. 中国煤炭. 2024(04): 36-45 .
![]() | |
17. |
李浩,朱开鹏,郭国强,周杨,康志勤. 大变幅加卸载下特厚煤层底板断层突水机理模拟研究. 煤田地质与勘探. 2024(05): 118-128 .
![]() | |
18. |
郭团结,高超,王平,黄尊英. 综采工作面顶板定向水力压裂技术应用. 煤炭技术. 2024(07): 37-40 .
![]() | |
19. |
李浩,唐世斌,康志勤,杨栋,马立强. 特厚煤层底板断层破坏与顶板垮断联动效应的CFDEM模拟研究. 煤炭学报. 2024(06): 2615-2629 .
![]() | |
20. |
罗生虎,韩昊强,伍永平,解盘石,高喜才,王同,田程阳,闫壮壮,李志林,尹建辉. 结构瞬变影响下采场煤岩静态力学响应的阶变规律. 煤炭工程. 2024(07): 110-119 .
![]() | |
21. |
潘鹏. 坚硬顶板工作面水力压裂弱化技术应用. 江西煤炭科技. 2024(03): 43-45 .
![]() | |
22. |
马洪波. 深部特厚煤层开采过程中地表变形特征. 陕西煤炭. 2024(09): 6-10 .
![]() | |
23. |
谢福星. 地面充填钻孔钻进过程应力-位移演化规律数值模拟研究. 建井技术. 2024(04): 1-6 .
![]() | |
24. |
潘卫东,阚拓,徐永鑫. 大埋深“三软”厚煤层智能综放开采技术研究. 煤炭工程. 2024(10): 90-99 .
![]() | |
25. |
徐颖,杨敬轩,傅菊根,黄文尧,杨荣周,王梦想. 综采面坚硬顶板超深孔预裂爆破远场解危控制技术. 工程爆破. 2024(05): 112-124 .
![]() | |
26. |
黄慧. 晋北某煤矿皮带东延巷支护优化设计及应用. 晋控科学技术. 2024(06): 8-11 .
![]() | |
27. |
耿铭,孙静. 厚硬顶板悬顶致灾机理及切顶控制技术研究. 工矿自动化. 2024(11): 132-141 .
![]() | |
28. |
朱卫兵,郭春雷,罗讯,柴发英,谢建林,柴毅. 非均厚特厚煤层开采高位组合悬臂板结构运动致灾机制. 工矿自动化. 2024(12): 1-10 .
![]() | |
29. |
刘用,王红伟,吴学松,田程鹏,关荣福,聂云枭,范志伟,曹沛沛. 上分层遗留区段煤柱下斜交工作面综放开采覆岩结构演化特征. 工矿自动化. 2024(12): 46-58 .
![]() | |
30. |
王国法,庞义辉,许永祥,孟令宇,韩会军. 厚煤层智能绿色高效开采技术与装备研发进展. 采矿与安全工程学报. 2023(05): 882-893 .
![]() | |
31. |
杨胜利,李杨,王兆会,王伟,孙文超,李增强,曹鹏. 充填体支撑作用下坚硬顶板运动模式与控制方法. 采矿与安全工程学报. 2023(05): 1057-1066 .
![]() | |
32. |
郭晋伟. 特厚煤层综放开采小煤柱宽度分析研究. 山西冶金. 2023(09): 90-92 .
![]() | |
33. |
乔晓峰. 煤矿坚硬顶板煤层安全开采技术探析. 矿业装备. 2023(12): 54-55 .
![]() | |
34. |
高朝,张超. 坚硬顶板工作面岩层移动规律及支架合理选型研究. 晋控科学技术. 2023(06): 21-24+28 .
![]() |