ZHANG Yujun,ZHANG Zhiwei,XIAO Jie,et al. Study on mining water inrush mechanism of buried fault under coal seam floor above confined water body[J]. Coal Science and Technology,2023,51(2):283−291
. DOI: 10.13199/j.cnki.cst.2022-1698Citation: |
ZHANG Yujun,ZHANG Zhiwei,XIAO Jie,et al. Study on mining water inrush mechanism of buried fault under coal seam floor above confined water body[J]. Coal Science and Technology,2023,51(2):283−291 . DOI: 10.13199/j.cnki.cst.2022-1698 |
Due to the wide distribution, large quantity, strong invisibility and difficult detection, the activated water inrush of buried fault on the bottom strata has become one of the main forms of deep mining water inrush. According to the development scale and spatial location of buried fault, three modes of water inrush are summarized: water inrush due to connection of floor and buried fault, water inrush of upper and lower buried fault. According to the water inrush mode of the floor of buried fault at the bottom of coal seam above stressed water body, the development of induced floor stress during mining, the extension of buried fault and the evolution of water inrush passages during coal mining are studied by mechanical analysis, physical simulation of floor water inrush and FLAC3D numerical modelling. The results show that with the advance of working surface, the floor rock close to the coal seam is subjected to a compression-unloading-recovery process forming mining-induced failure zone. The stress within the floor is horizontal “S” shape with a boundary of the working face. Under the effect of mining-water pressure-buried fault, the buried fault blocks the extraction-induced stress with the movement of the working face. The degree of damage of the mining pressure-hydraulic pressure of the buried fault is earlier and more serious which is more likely to induce the development of water conducting fractures. The pre-existing fractures of buried fault expands and develops upward in the opposite direction of advance of the working face, forming the water inrush passages by connecting with the mining-induced destruction zone. The rise of the pressured water is closely related to the mining fracture development. The rise intensity of mining-induced pressured water and the range of strong seepage area develop gradually with the advance of the working face. The buried fault mining area above the hidden fault. The amount of water increases gradually with the advance of the working surface. On the basis of the division of the floor with buried fault into “buried fault mining activation area, water blocking area and mining-induced area”, the water inrush mechanism of floor containing buried fault above the pressurized water is revealed.
[1] |
彭苏萍. 深部煤炭资源赋存规律与开发地质评价研究现状及今后发展趋势[J]. 煤,2008(2):1−11. doi: 10.3969/j.issn.1005-2798.2008.02.001
PENG Suping. Present study and development trend of the deepen coal resource distribution and mining geologic evaluation[J]. Coal,2008(2):1−11. doi: 10.3969/j.issn.1005-2798.2008.02.001
|
[2] |
武 强. 我国矿井水防控与资源化利用的研究进展、问题和展望[J]. 煤炭学报,2014,39(5):795−805.
WU Qiang. Progress, problems and prospects of prevention and control technology of mine water and reutilization in China[J]. Journal of China Coal Society,2014,39(5):795−805.
|
[3] |
何满潮,谢和平,彭苏萍,等. 深部开采岩体力学研究[J]. 岩石力学与工程学报,2005,24(16):2803−2813. doi: 10.3321/j.issn:1000-6915.2005.16.001
HE Manchao,XIE Heping,PENG Suping,et al. Study on rock mechanics in deep mining engineering[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(16):2803−2813. doi: 10.3321/j.issn:1000-6915.2005.16.001
|
[4] |
董书宁,虎维岳. 中国煤矿水害基本特征及其主要影响因素[J]. 煤田地质与勘探,2007,35(5):34−37. doi: 10.3969/j.issn.1001-1986.2007.05.009
DONG Shuning,HU Weiyue. Basic characteristics and main controlling factors of coal mine water hazard in China[J]. Coal Geology & Exploratioon,2007,35(5):34−37. doi: 10.3969/j.issn.1001-1986.2007.05.009
|
[5] |
魏久传,李白英. 承压水上采煤安全性评价[J]. 煤田地质与勘探,2000,28(4):57−59. doi: 10.3969/j.issn.1001-1986.2000.04.018
WEI Jiuchuan,LI Baiying. Security evaluation of coal mining above the confiend aquifers[J]. Coal Geolgy & Exploration,2000,28(4):57−59. doi: 10.3969/j.issn.1001-1986.2000.04.018
|
[6] |
文志杰,景所林,宋振骐,等. 采场空间结构模型及相关动力灾害控制研究[J]. 煤炭科学技术,2019,47(1):52−61. doi: 10.13199/j.cnki.cst.2019.01.007
WEN Zhijie,JING Suolin,SONG Zhenqi,et al. Study on coal face spatial structure model and control related dynamic disasters[J]. Coal Science and Technology,2019,47(1):52−61. doi: 10.13199/j.cnki.cst.2019.01.007
|
[7] |
陈军涛,武 强,尹立明,等. 高承压水上底板采动岩体裂隙演化规律研究[J]. 煤炭科学技术,2018,46(7):54−60,140. doi: 10.13199/j.cnki.cst.2018.07.008
CHEN Juntao,WU Qiang,YIN Liming,et al. Law of crack evolution in floor rock mass above high confined water[J]. Coal Science and Technology,2018,46(7):54−60,140. doi: 10.13199/j.cnki.cst.2018.07.008
|
[8] |
张风达. 深部采空区煤层底板滞后破坏特征[J]. 煤矿安全,2020,51(7):42−47. doi: 10.13347/j.cnki.mkaq.2020.07.009
ZHANG Fengda. Delayed failure characteristics of deep coal seam floor in goaf[J]. Safety in Coal Mines,2020,51(7):42−47. doi: 10.13347/j.cnki.mkaq.2020.07.009
|
[9] |
王连国,韩 猛,王占盛,等. 采场底板应力分布与破坏规律研究[J]. 采矿与安全工程学报,2013,30(3):317−322.
WANG Lianguo,HAN Meng,WANG Zhansheng,et al. Stress distribution and damage law of mining floor[J]. Journal of Mining & Safety Engineering,2013,30(3):317−322.
|
[10] |
田雨桐,张平松,吴荣新,等. 煤层采动条件下断层活化研究的现状分析及展望[J]. 煤田地质与勘探,2021,49(4):60−70. doi: 10.3969/j.issn.1001-1986.2021.04.008
TIAN Yutong,ZHANG Pingsong,WU Rongxin,et al. Research status and prospect of fault activation under coal mining conditions[J]. Coal Geology & Exploration,2021,49(4):60−70. doi: 10.3969/j.issn.1001-1986.2021.04.008
|
[11] |
刘志军,胡耀青. 承压水上采煤断层突水的固流耦合研究[J]. 煤炭学报,2007,32(10):1046−1050. doi: 10.3321/j.issn:0253-9993.2007.10.009
LIU Zhijun,HU Yaoqing. Solid-liquid coupling study on water inrush through faults in coal m ining above confined aquifer[J]. Journal of China Coal Society,2007,32(10):1046−1050. doi: 10.3321/j.issn:0253-9993.2007.10.009
|
[12] |
王进尚,姚多喜,黄 浩. 煤矿隐伏断层递进导升突水的临界判据及物理模拟研究[J]. 煤炭学报,2018,43(7):2014−2020. doi: 10.13225/j.cnki.jccs.2017.1252
WANG Jinshang,YAO Duoxi,HUANG Hao. Critical criterion and physical simulation research on progressive ascending water inrush inhidden faults of coal mines[J]. Journal of China Coal Society,2018,43(7):2014−2020. doi: 10.13225/j.cnki.jccs.2017.1252
|
[13] |
王进尚,姚多喜. 承压水上含隐伏断层突水动态监测物理模拟研究[J]. 地下空间与工程学报,2022,18(2):681−689.
WANG Jinshang,YAO Duoxi. Physical simulation study on dynamic monitoring of water inrush from concealed fault in confined water[J]. Chinese Journal of Underground Space and Engineering,2022,18(2):681−689.
|
[14] |
张 鹏,朱学军,孙文斌,等. 采动诱发充填断层活化滞后突水机制研究[J]. 煤炭科学技术,2022,50(3):136−143. doi: 10.13199/j.cnki.cst.2021-0809
ZHANG Peng,ZHU Xuejun,SUN Wenbin,et al. Study on mechanism of delayed water inrush caused by mining induced filling fault activation[J]. Coal Science and Technology,2022,50(3):136−143. doi: 10.13199/j.cnki.cst.2021-0809
|
[15] |
李连崇,唐春安,李 根,等. 含隐伏断层煤层底板损伤演化及滞后突水机理分析[J]. 岩土工程学报,2009,31(12):1838−1844. doi: 10.3321/j.issn:1000-4548.2009.12.006
LI Lianchong,TANG Chunan,LI Gen,et al. Damage evolution and delayed groundwater inrush from micro faults in coal seam floor[J]. Chinese Journal of Geotechnical Engineering,2009,31(12):1838−1844. doi: 10.3321/j.issn:1000-4548.2009.12.006
|
[16] |
丁建新. 不同倾角隐伏断层条件下的底板突水模拟研究[J]. 中国煤炭地质,2021,33(6):47−53. doi: 10.3969/j.issn.1674-1803.2021.06.08
DING Jianxin. Simulative study on floor water bursting in conditions of buried fault with differen[J]. Coal Geology of China,2021,33(6):47−53. doi: 10.3969/j.issn.1674-1803.2021.06.08
|
[17] |
张培森,颜 伟,张文泉,等. 含隐伏断层煤层回采诱发底板突水影响因素研究[J]. 采矿与安全工程学报,2018,35(4):765−772. doi: 10.13545/j.cnki.jmse.2018.04.014
ZHANG Peisen,YAN Wei,ZHANG Wenquan,et al. Study on factors influencing groundwater inrush induced by backstopping of a coal seam with a hidden fault[J]. Journal of Mining & Safety Engineering,2018,35(4):765−772. doi: 10.13545/j.cnki.jmse.2018.04.014
|
[18] |
刘伟韬,刘士亮,廖尚辉,等. 断层影响下底板突水通道研究[J]. 煤炭工程,2015,47(12):85−88.
LIU Weitao,LIU Shiliang,LIAO Shangwei,et al. Study on water inrush passage from floor affected by fault[J]. Coal Engineering,2015,47(12):85−88.
|
[19] |
陈亮亮,王恩营,廉有轩. 煤层底板隐伏断层突水危险性数值模拟分析[J]. 煤炭科学技术,2015,43(S1):41−44.
CHEN Liangliang,WANG Enying,LIAN Youxuan. Numerical simulation analysis of water inrush risk of buried faults in coal seam floor[J]. Coal Science and Technology,2015,43(S1):41−44.
|
[20] |
张志巍,张玉军,张风达. 采动与隐伏断层双重作用下底板破坏特征[J]. 煤矿安全,2021,52(1):194−199. doi: 10.13347/j.cnki.mkaq.2021.01.037
ZHANG Zhiwei,ZHANG Yujun,ZHANG Fengda. Double function of traction and concealed fault[J]. Safety in Coal Mines,2021,52(1):194−199. doi: 10.13347/j.cnki.mkaq.2021.01.037
|
[21] |
杨登峰,陈忠辉,刘 鑫,等. 含隐伏断层煤矿底板采动突水规律数值模拟[J]. 煤矿安全,2015,46(11):193−195. doi: 10.13347/j.cnki.mkaq.2015.11.054
YANG Dengfeng,CHEN Zhonghui,LIU Xin,et al. Numerical simulation of mining - induced water bursting law of coal floor with hidden faults[J]. Safety in Coal Mines,2015,46(11):193−195. doi: 10.13347/j.cnki.mkaq.2015.11.054
|
[22] |
周群力. 岩石压剪断裂判据及其应用[J]. 岩土工程学报,1987,9(3):33−37. doi: 10.3321/j.issn:1000-4548.1987.03.004
ZHOU Qunli. Rock compressive shear fracture criterion and its application[J]. Chinese Journal of Geotechnical Engineering,1987,9(3):33−37. doi: 10.3321/j.issn:1000-4548.1987.03.004
|
[23] |
孙文斌,张士川. 深部采动底板突水模拟试验系统的研制与应用[J]. 岩石力学与工程学报,2015,34(S1):3274−3280. doi: 10.13722/j.cnki.jrme.2014.0538
SUN Wenbin,ZHANG Shichuan. Development of floor water invasion of mining influence simulation testing system and its application[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(S1):3274−3280. doi: 10.13722/j.cnki.jrme.2014.0538
|
[24] |
张士川,郭惟嘉,孙文斌,等. 深部开采隐伏构造扩展活化及突水试验研究[J]. 岩土力学,2015,36(11):3111−3120. doi: 10.16285/j.rsm.2015.11.010
ZHANG Shichuan,GUO Weijia,SUN Wenbin,et al. Experimental research on extended activation and water inrush of concealed structure in deep mining[J]. Rock and Soil Mechanics,2015,36(11):3111−3120. doi: 10.16285/j.rsm.2015.11.010
|
[25] |
张玉军,张风达,张志巍,等. 采动煤层底板层次性破坏特征全空间多参量协同监测[J]. 煤炭科学技术,2022,50(2):86−94. doi: 10.13199/j.cnki.cst.2021-0170
ZHANG Yujun,ZHANG Fengda,ZHANG Zhiwei,et al. Full-space multi-parameter cooperative monitoring of failure hierarchy characteristics of mining coal seam floor[J]. Coal Science and Technology,2022,50(2):86−94. doi: 10.13199/j.cnki.cst.2021-0170
|
1. |
杨琴,杨勤,岳丽杰,刘禹池,陈冠陶,陈玉峰,刘永红,王谢. 复垦土地夏玉米栽培技术. 四川农业科技. 2025(01): 19-23 .
![]() | |
2. |
张凯,李晓楠,暴凯凯,姜凯升,王潇芫,谭栩荧. 西北干旱露天煤矿排土场土壤重构与水盐运移机制. 煤炭学报. 2024(03): 1556-1569 .
![]() |