Citation: | HE Xuwen,WANG Shaozhou,ZHANG Xuewei,et al. Coal mine drainage resources utilization technology innovation[J]. Coal Science and Technology,2023,51(1):523−530. DOI: 10.13199/j.cnki.cst.2022-1641 |
The resource utilization of coal mine drainage has been attracting growing attention. The increasingly stringent discharge standards and the deepening of the concept of intelligent mine have posed new challenges to mine water treatment technology. This paper discussed the traditional treatment processes and the multi-stage filtration underground treatment technology. In addition, a new high-efficiency technology-Polycera membrane ultrafiltration-was proposed to treat coal mine drainage on the basis of summarizing the existing technology problems. Compared with the multi-process of the traditional treatment technology, the new technology only includes two main units, high pressure pretreatment and atmospheric filtration treatment, because the treatment process does not need dosing and the whole dosing system can be omitted, which solves the problem that the traditional coal mine drainage treatment method must add coagulant, and can truly make the whole process of coal mine drainage treatment unattended and meet the requirements of the intelligent mine. The new technology offers the advantage of a shorter process flow and a smaller footprint and could ensure the stability of effluent water quality. Besides, the new technology could be operated automatically without chemical additions. At the same time, it can realize modularization and intellectualization, and can be applied to the direct filtration of coal mine drainage containing high suspended solids in different scenarios, or as the pretreatment unit of coal mine drainage brackish water, especially suitable for the in-situ reuse of coal mine drainage underground treatment. The core component of the new technology is the Polycera membrane with high strength and high-water flux. It is a super hydrophilic and oleophobic material that can withstand suspended solids (SS) of high concentrations up to 10000 mg/L. By analyzing the laboratory-scale test results and the reconstruction engineering case of coal mine drainage treatment on the ground, it can be seen that in the range of inlet SS of 0-10000 mg/L, the SS of the filtered effluent after direct filtration with Polycera membrane can be stably below 1 mg/L, and the turbidity can be stably below 1NTU, it is shown that the new technology presents apparent advantages in the resource utilization of coal mine drainage. This technology could provide a technical reference for large-scale engineering applications in the future.
[1] |
高 亮. 我国煤矿矿井水处理技术现状及其发展趋势[J]. 煤炭科学技术,2007(9):1−5. doi: 10.3969/j.issn.0253-2336.2007.09.001
GAO Liang. Status of technology for processing mine water and its trend in China[J]. Coal Science and Technology,2007(9):1−5. doi: 10.3969/j.issn.0253-2336.2007.09.001
|
[2] |
何绪文,张晓航,李福勤,等. 煤矿矿井水资源化综合利用体系与技术创新[J]. 煤炭科学技术,2018,46(9):4−11. doi: 10.13199/j.cnki.cst.2018.09.002
HE Xuwen,ZHANG Xiaohang,LI Fuqin,et al. Comprehensive utilization system and technical innovation of coal mine water resources[J]. Coal Science and Technology,2018,46(9):4−11. doi: 10.13199/j.cnki.cst.2018.09.002
|
[3] |
王国法. 煤矿智能化最新技术进展与问题探讨[J]. 煤炭科学技术,2022,50(1):1−27. doi: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201001
WANG Guofa. New technological progress of coal mine intelligence and its problems[J]. Coal Science and Technology,2022,50(1):1−27. doi: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201001
|
[4] |
ZHANG Siyu,WANG Hao,HE Xuwen,et al. Research progress, problems and prospects of mine water treatment technology and resource utilization in China[J]. Critical Reviews in Environmental Science and Technology,2020,50(4):331−383.
|
[5] |
顾大钊,李井峰,曹志国,等. 我国煤矿矿井水保护利用发展战略与工程科技[J]. 煤炭学报,2021,46(10):3079−3089. doi: 10.13225/j.cnki.jccs.2021.0917
GU Dazhao,LI Jingfeng,CAO Zhiguo,et al. Technology and engineering development strategy of water protection and utilization of coal mine in China[J]. Journal of China Coal Society,2021,46(10):3079−3089. doi: 10.13225/j.cnki.jccs.2021.0917
|
[6] |
李福勤,李 硕,何绪文,等. 煤矿矿井水处理工程存在的问题及对策[J]. 中国给水排水,2012,28(2):18−20. doi: 10.3969/j.issn.1000-4602.2012.02.005
LI Fuqin,LI Shuo,HE Xuwen,et al. Problems and solutions for mine water treatment works[J]. China Water & Wastewater,2012,28(2):18−20. doi: 10.3969/j.issn.1000-4602.2012.02.005
|
[7] |
李福勤,朱云浩,焦亚楠. 二次混凝+沉淀工艺处理高岩粉矿井水试验研究[J]. 能源环境保护,2019,33(6):6−8,46. doi: 10.3969/j.issn.1006-8759.2019.06.002
LI Fuqin,ZHU Yunhao,JIAO Yanan. Experimental study on treatment of high rock powder mine water by secondary coagulation and precipitation process[J]. Energy Environmental Protection,2019,33(6):6−8,46. doi: 10.3969/j.issn.1006-8759.2019.06.002
|
[8] |
郑利祥,郭中权,毛维东. 矿井水处理聚合氯化铝残留物对超滤膜污染的影响[J]. 中国给水排水,2021,37(1):51−56,63. doi: 10.19853/j.zgjsps.1000-4602.2021.01.009
ZHENG Lixiang,GUO Zhongquan,MAO Weidong. Influence of polyaluminium chloride residue on ultrafiltration membrane fouling in mine water treatment[J]. China Water & Wastewater,2021,37(1):51−56,63. doi: 10.19853/j.zgjsps.1000-4602.2021.01.009
|
[9] |
郭中权,毛维东,肖 艳,等. 矿井水处理中聚丙烯酰胺残留物对反渗透膜污染的贡献[J]. 煤炭学报,2020,45(S2):986−992. doi: 10.13225/j.cnki.jccs.2020.0260
GUO Zhongquan,MAO Weidong,XIAO Yan,et al. Impact of polyacrylamide residue on reverse osmosis membrane fouling in mine water treatment[J]. Journal of China Coal Society,2020,45(S2):986−992. doi: 10.13225/j.cnki.jccs.2020.0260
|
[10] |
张 超,王宏义,李红伟,等. 含悬浮物矿井水处理技术现状及发展趋势[J]. 煤炭加工与综合利用,2019(12):72−75. doi: 10.16200/j.cnki.11-2627/td.2019.12.020
ZHANG Chao,WANG Hongyi,LI Hongwei,et al. Present situation and development trend of mine water treatment technology containing suspended solids[J]. Coal Processing & Comprehensive Utilization,2019(12):72−75. doi: 10.16200/j.cnki.11-2627/td.2019.12.020
|
[11] |
张晓航,何绪文,王 浩,等. 磁絮凝工艺对含悬浮物矿井水处理效果的研究[J]. 水处理技术,2018,44(4):122−125,132. doi: 10.16796/j.cnki.1000-3770.2018.04.026
ZHANG Xiaohang,HE Xuwen,WANG Hao,et al. Mine water treatment effect with magnetic flocculation Technology and flocs fractal characteristics[J]. Technology of Water Treatment,2018,44(4):122−125,132. doi: 10.16796/j.cnki.1000-3770.2018.04.026
|
[12] |
李福勤,何绪文,吕晓龙,等. 煤矿矿井水井下处理新技术及工程应用[J]. 煤炭科学技术,2014,42(1):117−120. doi: 10.13199/j.cnki.cst.2014.01.027
LI Fuqin,HE Xuwen,LU Xiaolong,et al. Engineering application and new technology of underground mine water treatment[J]. Coal Science and Technology,2014,42(1):117−120. doi: 10.13199/j.cnki.cst.2014.01.027
|
[13] |
郭中权, 何绪文, 毛维东, 等. 矿井水资源化利用和零排放处理技术与工程案例[M]. 北京: 中国石化出版社, 2022: 100−106.
|
[14] |
周如禄,高 亮,郭中权,等. 煤矿矿井水井下直接处理及循环利用[J]. 中国给水排水,2013,29(4):71−74,79. doi: 10.3969/j.issn.1000-4602.2013.04.019
ZHOU Rulu,GAO Liang,GUO Zhongquan,et al. Underground direct treatment and recycle of coal mine water[J]. China Water & Wastewater,2013,29(4):71−74,79. doi: 10.3969/j.issn.1000-4602.2013.04.019
|
[15] |
ZHANG Liping,CHEN Aolei,QU Hongbin,et al. Fe and Mn removal from mining drainage using goaf filling materials obtained from coal mining process[J]. Water Science and Technology,2015,72(11):1940−1947.
|
[16] |
LIM Ying Pei,JASIMIN Afifah,NG Law Yong,et al. Performance evaluation on ultrafiltration as tertiary treatment for rubber glove wastewater[J]. Materials Today: Proceedings,2022,63(S1):267−272.
|
[17] |
TEOW Yeit Haan,LOH Wei Chean,ABDUL Wahab Mohammad. Thermo-responsive antifouling study of commercial PolyCera® membranes for POME treatment[J]. Membrane Water Treatment,2020,11(2):97−109.
|
[18] |
HURWITZ G,BHATTACHARJEE S,SEO E,et al. Field testing of PolyCera®, PES, and PVDF ultrafiltration membranes in municipal tertiary filtration: Impacts of membrane polymer chemistry on fouling, cleaning, energy, and cost[J]. Desalination and water treatment,2018,111:39−47.
|
[19] |
何绪文. 一种煤矿矿井水处理系统[P]. 中国专利: 202211169558.3, 2022-09-23.
|
[20] |
何绪文, 夏 瑜, 张春晖. 一种高悬浮物矿井水井下短流程直滤处理装置与方法[P]. 中国专利: CN114506934A, 2022−05−17.
|
1. |
余伟健,孙梅霖,杜锦滢,陈国梁,王闯. “双碳”目标下矿山生态修复及减排增汇途径研究进展. 矿业安全与环保. 2025(01): 38-46 .
![]() | |
2. |
董陆军,陈纲,李子涵,李硕,肖一尧,姜春峰. 基于数字孪生露天煤矿碳能监管平台应用研究. 矿业安全与环保. 2025(01): 173-179 .
![]() | |
3. |
王汉鹏,张冰,张玉军,吴宝杨,武洋,李鹏,王鹏. 地下水库典型岩体全应力应变过程碎胀-储水特性. 哈尔滨工业大学学报. 2025(03): 120-128 .
![]() | |
4. |
李涛,杨涛,刘金成,刘子健,杨天阳. 煤基固废充填料浆长距离输送悬浮态稳定性研究. 煤炭科学技术. 2025(02): 444-456 .
![]() | |
5. |
金向阳,李杨,于雷,李要娜,雷兴海,王楠,鄢明慈,夏雪,任玉琦. 煤矿区绿色低碳评价指标构建及应用. 煤炭科学技术. 2024(04): 131-142 .
![]() | |
6. |
李晓磊,杜献杰,冯国瑞,巨峰,王建伟,刘文昊,郑远翔. 水泥–粉煤灰基矸石胶结充填体破坏特征及强度形成机制. 煤炭科学技术. 2024(05): 36-45 .
![]() | |
7. |
杨宝贵,顾成进,施展,杨发光,王龙飞,李红骄. 深部高浓度胶结充填开采地表沉陷控制因素及影响规律. 绿色矿山. 2024(03): 234-245 .
![]() | |
8. |
原志敏,卓锦德,董阳,林德海. 煤基固废在采煤沉陷区回填利用现状及相关研究探讨. 中国煤炭. 2024(11): 133-141 .
![]() |