Advance Search
XUE Meiping,ZHANG Zhijun,ZHAO Yue. Hydrochemical evolution of mine water injection in Hojirt Mining Area[J]. Coal Science and Technology,2023,51(S1):470−476. DOI: 10.13199/j.cnki.cst.2022-1601
Citation: XUE Meiping,ZHANG Zhijun,ZHAO Yue. Hydrochemical evolution of mine water injection in Hojirt Mining Area[J]. Coal Science and Technology,2023,51(S1):470−476. DOI: 10.13199/j.cnki.cst.2022-1601

Hydrochemical evolution of mine water injection in Hojirt Mining Area

More Information
  • Received Date: September 29, 2022
  • Available Online: August 13, 2023
  • Recent years, the mining scale in Ordos Basin has been expanding gradually. And mine water has always been a crucial problem in coal mines. It’s a threaten for coal mine production. But at the same time, mine water is also precious water resource. So the dual utilization of coal and water is necessary for environmental protection. The hydrochemical evolution of mine water injection is the main factor of groundwater quality. So, the study of hydrochemical is the key to ensure groundwater quality, and also the premise of injection feasibility. In this paper, the hydrochemical evolution was analyzed by experiments and simulation. The results show that: ① The high temperature makes more precipitation.② It will generate calcium sulfate and magnesium sulfate, mainly calcium sulfate. Gypsum and anhydrite will increase in aquifer. ③ The precipitation of calcium sulfate would be flushed to the downstream of the flow network. It will adversely affect the injection process. ④ The farther away from the injection well, the less precipitation will stay. The above analysis provided a basis for the mechanism of hydrochemical evolution in mine water injection. And it provided significant reference for the application of mine water injection.

  • [1]
    武 强. 我国矿井水防控与资源化利用的研究进展、问题和展望[J]. 煤炭学报,2014,39(5):795−805.

    WU Qiang. Progress, problems and prospects of prevention and control technology of mine water and reutilization in China[J]. Journal of China Coal Society,2014,39(5):795−805.
    [2]
    何绪文,张晓航,李福勤,等. 煤矿矿井水资源化综合利用体系与技术创新[J]. 煤炭科学技术,2018,46(9):4−11.

    HE Xuwen,ZHANG Xiaohang,LI Fuqin,et al. Comprehensive utilization system and technical innovation of coal mine water resources[J]. Coal Science and Technology,2018,46(9):4−11.
    [3]
    顾大钊,李井峰,曹志国,等. 我国煤矿矿井水保护利用发展战略与工程科技[J]. 煤炭学报,2021,46(10):3079−3089.

    GU Dazhao,LI Jingfeng,CAO Zhiguo,et al. Technology and engineering development strategy of water protection and utilization of coal mine in China[J]. Journal of China Coal Society,2021,46(10):3079−3089.
    [4]
    苏小四,谷小溪,孟婧莹,等. 人工回灌条件下多组分溶质的反应迁移模拟[J]. 吉林大学学报(地球科学版),2012,42(2):485−491.

    SU Xiaosi,GU Xiaoxi,MENG Jingying,et al. Fate and transport simulation of multi-component solute under artificial recharge conditions[J]. Journal of Jilin University (Earth Science Edition),2012,42(2):485−491.
    [5]
    李 鑫,孙亚军,陈 歌,等. 高矿化度矿井水深部转移存储介质条件及影响机制[J]. 煤田地质与勘探,2021,49(5):17−28.

    LI Xin,SUN Yajun,CHEN Ge,et al. Medium conditons and influence mechanism of high salinity mine water transfer and storage by deep well recharge[J]. Coal Geology & Exploration,2021,49(5):17−28.
    [6]
    张溪彧,杨 建,王 皓,等. 露天矿地下水库人工回灌介质渗透性与水质变化规律研究[J]. 煤炭科学技术,2022,50(7):291−297.

    ZHANG Xiyu,YANG Jian,WANG Hao,et al. Study on the regular pattern of medium permeability and water qualityvariation during artificial recharge of open-pit mine groundwater reservoir[J]. Coal Science and Technology,2022,50(7):291−297.
    [7]
    ARTHUR J D , DABOUS A A , COWART J B . Mobilization of arsenic and other trace elements during aquifer storage and recovery, southwest Florida[C]. U. S. Geological Survey Artificial Recharge Workshop Proceedings, 2002: 20-32.
    [8]
    WARNER D L,DOTY L F. Chemical reaction between recharge water and aquifer water[J]. International Union of Geodesy and Geophysics,1967,1:278−288.
    [9]
    VANDERZALM J L,PAGE D W,BARRY K E,et al. A comparison of the geochemical response to different managed aquifer recharge operations for injection of urban stormwater in a carbonate aquifer[J]. Applied Geochemistry,2010,25(9):1350−1360. doi: 10.1016/j.apgeochem.2010.06.005
    [10]
    PAVELIC P,DILLON P J,BARRY K E,et al. Water quality effects on clogging rates during reclaimed water ASR in a carbonate aquifer[J]. Journal of Hydrology,2007,334(1-2):1−16. doi: 10.1016/j.jhydrol.2006.08.009
    [11]
    耿新新,张凤娥,朱谱成,等. 滹沱河地下水超采区人工回灌的水岩相互作用模拟[J]. 重庆大学学报,2022,45(2):81−93.

    GENG Xinxin,ZHANG Feng’e,ZHU Pucheng,et al. Water-rock interaction simulation of artificial recharge in the groundwater over-exploited area of the Hutuo River Basin[J]. Journal of Chongqing University,2022,45(2):81−93.
    [12]
    MA L,SPALDING R F. Effects of artificial recharge on ground water quality and aquifer storage recovery[J]. Journal of the American Water Resources Association,1997,33(3):561−572. doi: 10.1111/j.1752-1688.1997.tb03532.x
    [13]
    吴宝杨,李全生,曹志国,等. 煤矿地下水库高盐矿井水封存对地下水的影响[J]. 煤炭学报,2021,46(7):2360−2369.

    WU Baoyang,LI Quansheng,CAO Zhiguo,et al. Influence of high salt mine water storaged in underground reservoir of coal mine on Groundwater[J]. Joumal of China Coal Society,2021,46(7):2360−2369.
    [14]
    郑凡东,刘立才,杨牧骑,等. 南水北调水源北京西郊回灌的水岩相互作用模拟[J]. 水文地质工程地质,2012,39(6):22−28.

    ZHENG Fandong,LIU Licai,YANG Muqi,et al. Simulation of water-rock interaction in the injection of water from the South-to-North Diversion Project to the aquifer in the western suburb of Beijing[J]. Hydrogeology & Engineering Geology,2012,39(6):22−28.
    [15]
    杜新强,齐素文,廖资生,等. 人工补给对含水层水质的影响[J]. 吉林大学学报(地球科学版),2007,37(2):293−297. doi: 10.13278/j.cnki.jjuese.2007.02.016

    DU Xinqiang,QI Suwen,LIAO Zisheng,et al. Influence of artificial recharge on groundwater quality[J]. Journal of Jilin University (earth science edition),2007,37(2):293−297. doi: 10.13278/j.cnki.jjuese.2007.02.016
    [16]
    陈 歌. 鄂尔多斯盆地东缘矿井水深部转移存储机理研究[D]. 徐州: 中国矿业大学, 2020.

    CHEN Ge. Study on the deep transportation and storage mechanism of mine water in the eastern margin of Ordos Basin[D]. Xuzhou: China University of Mining and Technology , 2020.
    [17]
    陶 怡. CO2/CO2-H2S流体与刘家沟组砂岩相互作用的实验研究[D]. 长春: 吉林大学, 2013.

    TAO Yi. Experimental study on the interaction of CO2/CO2-H2S fluid with sandstone in liujiagou[D]. Changchun: Jilin University, 2013.
    [18]
    梁向阳,杨 建,曹志国. 呼吉尔特矿区矿井涌水特征及其沉积控制[J]. 煤田地质与勘探,2020,48(1):138−144. doi: 10.3969/j.issn.1001-1986.2020.01.018

    LIANG Xiangyang,YANG Jian,CAO Zhiguo. Characteristics and sedimental control of mine water outflow in Hujirt mining area[J]. Coal Geology & Exploration,2020,48(1):138−144. doi: 10.3969/j.issn.1001-1986.2020.01.018
    [19]
    毛晓敏,刘 翔,BARRY D A. PHREEQC在地下水溶质反应运移模拟中的应用[J]. 水文地质工程地质,2004,31(2):20−24. doi: 10.3969/j.issn.1000-3665.2004.02.005

    MAO Xiaomin,LIU Xiang,BARRY D A. Application of PHREEQC on solute reactive transport modeling in groundwater[J]. Hydrogeology & Engineering Geology,2004,31(2):20−24. doi: 10.3969/j.issn.1000-3665.2004.02.005
    [20]
    KARMEGAM U,CHIDAMBARAM S,PRASANNA M V,et al. A study on the mixing proportion in groundwater samples by using Piper diagram and Phreeqc model[J]. Chinese Journal of Geochemistry,2011,30(4):490−495. doi: 10.1007/s11631-011-0533-3
    [21]
    YANG Lei,HE Jiangtao,LIU Yumei,et al. Characteristics of change in water quality along reclaimed water intake area of the Chaobai River in Beijing, China[J]. Journal of Environmental Sciences,2016,50(12):93−102.
  • Cited by

    Periodical cited type(3)

    1. 王旭东,闫祖喻,唐佳伟,张锁,郭强,刘小庆,陈明聪,李井峰. 新街台格庙矿区首采井田矿井水水化学特征及数值模拟预测. 中国煤炭. 2024(07): 154-163 .
    2. 李胜涛,施金宇,丁欣明,岳冬冬,路莹. 白洋淀地表水回灌补给深部岩溶地热储层的水化学数值模拟. 中国环境科学. 2024(10): 5830-5838 .
    3. 李昂,吕伟,景长生,丁学松,刘军亮,冯碧野,范六一. 平煤西部矿区水-岩共生地下水化学特征. 西安科技大学学报. 2024(06): 1154-1164 .

    Other cited types(0)

Catalog

    Article views (58) PDF downloads (19) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return