Advance Search

GUO Wenbing,ZHAO Gaobo,MA Zhibao,et al. Research status and prospect on mining damage characteristics and protective technology of high-rise structures[J]. Coal Science and Technology,2023,51(1):403−415

. DOI: 10.13199/j.cnki.cst.2022-1600
Citation:

GUO Wenbing,ZHAO Gaobo,MA Zhibao,et al. Research status and prospect on mining damage characteristics and protective technology of high-rise structures[J]. Coal Science and Technology,2023,51(1):403−415

. DOI: 10.13199/j.cnki.cst.2022-1600

Research status and prospect on mining damage characteristics and protective technology of high-rise structures

Funds: 

Joint Funds of the National Natural Science Foundation of China (U21A20108, U22A20620); Central Plains Science and Technology Innovation Leading Talents Project (224200510012)

More Information
  • Received Date: September 29, 2022
  • Available Online: March 08, 2023
  • Some mining areas in China are facing with technical problems about coal mining under high-rise structures. The high-rise structure in the mining area is characterized by large height, small cross-section area, high center of gravity, small bottom area of supporting foundation, etc. It is a kind of special structure and is sensitive to the surface movement and deformation caused by underground mining. Based on the analysis of the characteristics of high-rise structures and their mining deformation characteristics, this paper summarizes and analyzes the research and development process of mining damage and protection technology of high-rise structures based on four aspects: mining deformation theory, numerical simulation, deformation monitoring technology, and protection technology, including the theory of cooperative deformation of high-rise structures and foundations, numerical (physical) simulation analysis of the impact of mining on the deformation of high-rise structures, real time, efficient and accurate monitoring technology, precise grouting and reinforcement technology for foundations, anti-deformation transformation technology for foundation, dynamic inclination adjustment technology for high-rise structures, reducing surface subsidence from the source, etc; The four development directions of mining damage and protection technology for high-rise structures are prospected: mining deformation characteristics of high-rise structures under the action of multiple indicators of surface movement and deformation, transmission mechanism from mining subsidence to deformation of high-rise structures, real-time and efficient accurate deformation monitoring technology for high-rise structures, and accurate protection technology for high-rise structures.

  • [1]
    李树志. 我国采煤沉陷区治理实践与对策分析[J]. 煤炭科学技术,2019,47(1):36−43.

    LI Shuzhi. Control practices and countermeasure analysis on coal mining subsidence area in China[J]. Coal Science and Technology,2019,47(1):36−43.
    [2]
    钱鸣高,许家林. 煤炭开采与岩层运动[J]. 煤炭学报,2019,44(4):973−984. doi: 10.13225/j.cnki.jccs.2019.0337

    QIAN Minggao,XU Jialin. Behaviors of strata movement in coal mining[J]. Journal of China Coal Society,2019,44(4):973−984. doi: 10.13225/j.cnki.jccs.2019.0337
    [3]
    GUO Wenbing,ZHAO Gaobo,LOU Gaozhong,et al. A new method of predicting the height of the fractured water-conducting zone due to high-intensity longwall coal mining in China[J]. Rock Mechanics and Rock Engineering,2018,52:2789−2802.
    [4]
    郭文兵. 高耸构筑物采动变形理论与保护[M]. 北京: 科学出版社, 2022.
    [5]
    PENG. S. Syd. Surface subsidence engineering: theory and practice[M]. Netherlands: CRC Press, 2020.
    [6]
    郭文兵,郑 彬. 高压线铁塔下放顶煤开采及其安全性研究[J]. 采矿与安全工程学报,2011,28(2):267−272. doi: 10.3969/j.issn.1673-3363.2011.02.019

    GUO Wenbing,ZHENG Bin. Study of coal caving mining under the steel tower of high-voltage transmission line and its safety[J]. Journal of Mining & Safety Engineering,2011,28(2):267−272. doi: 10.3969/j.issn.1673-3363.2011.02.019
    [7]
    邓喀中,郭广礼,谭志祥. 采动区建筑物地基、基础协同作用特性研究[J]. 煤炭学报,2001,26(6):601−605. doi: 10.3321/j.issn:0253-9993.2001.06.008

    DENG Kazhong,GUO Guangli,TAN Zhixiang. Study on the properties of coordination of the base and foundation of the building above mining subsidence areas[J]. Journal of China Coal Society,2001,26(6):601−605. doi: 10.3321/j.issn:0253-9993.2001.06.008
    [8]
    LUO, Y. Assessment and mitigation of subsidence effects on a tall self-supporting and free-standing communication tower[C]. 27th International Conference on Ground Control in Mining, 2007: 153-160.
    [9]
    郭文兵,赵高博,杨伟强,等. 高耸构筑物采动变形特征与地基精准注浆加固机理[J]. 煤炭学报,2022,47(5):1908−1920. doi: 10.13225/j.cnki.jccs.2021.1041

    GUO Wenbing,ZHAO Gaobo,YANG Weiqiang,et al. Deformation characteristics of high-rise structures and their precise grouting reinforcement mechanisms due to coal mining[J]. Journal of China Coal Society,2022,47(5):1908−1920. doi: 10.13225/j.cnki.jccs.2021.1041
    [10]
    郭文兵. 煤矿开采损害与保护[M]. 北京: 应急管理出版社, 2019.
    [11]
    胡炳南, 张华兴, 申宝宏. 建筑物、水体、铁路及主要井巷煤柱留设与压煤开采指南[M]. 北京: 煤炭工业出版社, 2017.
    [12]
    国家能源局. 架空输电线路运行规程[S]. 北京: 中国电力出版社, 2019.
    [13]
    郭文兵, 邓喀中, 邹友峰. 条带开采地表移动参数研究[J]. 煤炭学报, 2005, 30(3): 182-186.

    GUO Wenbing, DENG Kazhong, ZOU Youfeng. Research on surface movement parameters of strip-partial mining [J]. Journal of China Coal Society. 2005, 30(3): 182-186.
    [14]
    谭志祥,邓喀中. 采动区建筑物地基、基础和结构协同作用模型[J]. 中国矿业大学学报,2004,33(3):2−5. doi: 10.3321/j.issn:1000-1964.2004.03.007

    TAN Zhixiang,DENG Kazhong. Coordinating work model of ground, foundation and structure of building in mining area[J]. Journal of China University of Mining & Tethnology,2004,33(3):2−5. doi: 10.3321/j.issn:1000-1964.2004.03.007
    [15]
    谭志祥, 邓喀中. 采动区建筑物附加地基反力变化规律研究[J]. 煤炭学报, 2007: 32(9): 907-911.

    TAN Zhixiang, DENG Kazhong, Study on change laws of additional ground reaction force of buildings in mining area [J]. Journal of China Coal Society, 2007: 32(9): 907-911.
    [16]
    夏军武, 袁迎曙, 董正筑. 采动区地基、条形基础与框架结构共同作用机理研究[J]. 岩土工程学报, 2007, 29(4): 537-541.

    XIA Junwu, YUAN Yingshu, DONG Zhengzhu. Mechanism study on subsoil-strap footing-framework interaction in mining subsidence area [J]. Chinese Journal of Geotechnical Engineering. 2007, 29(4): 537-541.
    [17]
    夏军武,袁迎曙,董正筑. 采动区地基、独立基础与框架结构共同作用的力学模型[J]. 中国矿业大学学报,2007,36(1):33−37. doi: 10.3321/j.issn:1000-1964.2007.01.007

    XIA Junwu,YUAN Yingshu,DONG Zhengzhu. Mechanics model of ground, independent footing and framework interaction in mining subsidence area[J]. Journal of China University of Mining & Tethnology,2007,36(1):33−37. doi: 10.3321/j.issn:1000-1964.2007.01.007
    [18]
    郭文兵,雍 强. 采动影响下高压线塔与地基、基础协同作用模型研究[J]. 煤炭学报,2011,36(7):1075−1080.

    GUO Wenbing,YONG Qiang. Study on the synergy acting model of high voltage power transmission lines tower, groundwork and foundation influenced by mining[J]. Journal of China Coal Society,2011,36(7):1075−1080.
    [19]
    郭倩倩,高兴国,葛文海. 基于角度前方交会的高耸建筑倾斜监测方法与实践[J]. 测绘与空间地理信息,2018,41(11):210−213. doi: 10.3969/j.issn.1672-5867.2018.11.062

    GUO Qianqian,GAO Xingguo,GE Wenhai. Method and practice of high rise building inclination monitoring based on angle intersection[J]. Geomatics & Spatial Information Technology,2018,41(11):210−213. doi: 10.3969/j.issn.1672-5867.2018.11.062
    [20]
    王瑞斌,王清朋. 全站仪三点前方交会测量风电塔架倾斜[J]. 城市勘测,2021(3):169−172. doi: 10.3969/j.issn.1672-8262.2021.03.040

    WANG Ruibin,WANG Qingpeng. Measurement of wind power tower inclination by three points forward intersection of total station[J]. Urban Geotechnical Investigation & Surveying,2021(3):169−172. doi: 10.3969/j.issn.1672-8262.2021.03.040
    [21]
    阎跃观,戴华阳,高文龙,等. 逆断层条件下特高压输电线路铁塔采动影响变形规律研究[J]. 煤炭工程,2015,47(12):82−84,88.

    YAN Yueguan,DAI Huayang,GAO Wenlong,et al. Deformation rules of ultra-high voltage transmission tower due to two sides mining of reverse fault[J]. Coal Engineering,2015,47(12):82−84,88.
    [22]
    阎跃观,戴华阳,范振东,等. 高压输电线路铁塔下特厚急倾斜煤层首采面开切眼位置优化研[J]. 煤矿开采,2015,20(2):66−69.

    YAN Yueguan,DAI Huayang,FAN Zhendong,et al. Location optimization of open-off cut in steeply-inclined and extreme-ly-thick coal-seam under high-voltage line tower[J]. Journal of Mining and Strata Control Engineering,2015,20(2):66−69.
    [23]
    郑德华,沈云中,刘 春. 三维激光扫描仪及其测量误差影响因素分析[J]. 测绘工程,2005(2):32−34,56. doi: 10.3969/j.issn.1006-7949.2005.02.010

    ZHENG Dehua,SHEN Yunzhong,LIU Chun. 3D laser scanner and its effect factor analysis of surveying error[J]. Engineering of Surveying and Mapping,2005(2):32−34,56. doi: 10.3969/j.issn.1006-7949.2005.02.010
    [24]
    毛方儒,王 磊. 三维激光扫描测量技术[J]. 宇航计测技术,2005(2):1−6. doi: 10.3969/j.issn.1000-7202.2005.02.001

    MAO Fangru,WANG Lei. Measurement technology of 3D laser scanning[J]. Journal of Astronautic Metrology and Measurement,2005(2):1−6. doi: 10.3969/j.issn.1000-7202.2005.02.001
    [25]
    王 巍,王 彬,花春亮,等. 电力铁塔倾斜测量方法比较[J]. 电力勘测设计,2018(8):10−13,23. doi: 10.13500/j.cnki.11-4908/tk.2018.08.003

    WANG Wei,WANG Bin,HUA Chunliang,et al. Comparison of inclination measurement methods of power tower[J]. Electric Power Survey & Design,2018(8):10−13,23. doi: 10.13500/j.cnki.11-4908/tk.2018.08.003
    [26]
    麦晓明,陈 驰,彭向阳,等. 输电线路走廊三维可视化技术和系统设计[J]. 中国电力,2015,48(2):98−103.

    MAI Xiaoming,CHEN Chi,PENG Xiangyang,et al. 3D visualization technique of transmission line corridors: system design and implementation[J]. Electric Power,2015,48(2):98−103.
    [27]
    冯 耀,戴中东,刘伟劲,等. 通信铁塔垂直度三维激光扫描分析[J]. 测绘通报,2022(S2):140−142,178. doi: 10.13474/j.cnki.11-2246.2022.0574

    FENG Yao,DAI Zhongdong,LIU Weijin,et al. Verticality analysis of communication tower based on 3D laser scanning[J]. Bulletin of Surveying and Mapping,2022(S2):140−142,178. doi: 10.13474/j.cnki.11-2246.2022.0574
    [28]
    彭 雄,郭凯宁,万程辉. 三维激光扫描技术在输电线铁塔变形监测中的应用[J]. 工程技术研究,2020,5(7):38−39. doi: 10.3969/j.issn.1671-3818.2020.07.015

    PENG Xiong,GUO Kaining,WAN Chenghui. Application of 3D laser scanning technology in deformation monitoring of transmission line tower[J]. Engineering and Technological Research,2020,5(7):38−39. doi: 10.3969/j.issn.1671-3818.2020.07.015
    [29]
    梁 华,袁蕴良,王云端,等. 利用三维激光扫描技术进行输电铁塔变形监测研究[J]. 测绘通报,2017(7):156−157.

    LIANG Hua,YUAN Yunliang,WANG Yunduan,et al. Research on deformation monitoring of transmission tower using 3D laser scanning technology[J]. Bulletin of Surveying and Mapping,2017(7):156−157.
    [30]
    马维青,穆昭玺,袁广林. 基于三维激光扫描技术的采动区高压线塔变形监测和结构安全分析[J]. 钢结构,2017,32(12):76−80,116. doi: 10.13206/j.gjg201712015

    MA Weiqing,MU Zhaoxi,YUAN Guanglin. Deformation monitoring and structural safety analysis of high-voltage tower in mining area based on TLS[J]. Steel Construction,2017,32(12):76−80,116. doi: 10.13206/j.gjg201712015
    [31]
    代泽兵,鲁先龙,程永锋. 煤矿采空区架空输电线路基础研究[J]. 武汉大学学报(工学版),2009,42(S1):312−316.

    DAI Zebing,LU Xianlong,CHENG Yongfeng. Research on foundation of transmission line tower in mined-out areas[J]. Enginee ring Journal of Wuhan University,2009,42(S1):312−316.
    [32]
    孟 克,赵 戈,王文明,等. 输电线路工程基础简介及发展趋势[J]. 低温建筑技术,2020,42(6):146−150. doi: 10.13905/j.cnki.dwjz.2020.06.034

    MENG Ke,ZHAO Ge,WANG Wenming,et al. Brief introduction and development trend of foundations used in transmission line projects[J]. Low Temperature Architecture Technology,2020,42(6):146−150. doi: 10.13905/j.cnki.dwjz.2020.06.034
    [33]
    陈 榕,高宇聪,孟宪彬,等. 我国输电线路基础型式对比及其适用性分析[J]. 东北电力大学学报,2015,35(6):77−85. doi: 10.3969/j.issn.1005-2992.2015.06.015

    CHEN Rong,GAO Yucong,MENG Xianbin,et al. Comparison and applicability analysis for foundation types of transmission tower in China[J]. Journal of Northeast Electric Power University,2015,35(6):77−85. doi: 10.3969/j.issn.1005-2992.2015.06.015
    [34]
    刘彦东,贾云吉,张 华. 王家岭煤矿采空区110kV输电线路区域基础设计[J]. 露天采矿技术,2015(3):20−22. doi: 10.13235/j.cnki.ltcm.2015.03.007

    LIU Yandong,JIA Yunji,ZHANG Hua. Foundation design of 110 kV electric transmission line in Wangjialing Coal Mine goaf[J]. Opencast Mining Technology,2015(3):20−22. doi: 10.13235/j.cnki.ltcm.2015.03.007
    [35]
    舒前进,袁广林,郭广礼,等. 采煤沉陷区输电铁塔复合防护板基础抗变形性能及其板厚取值研究[J]. 防灾减灾工程学报,2012,32(3):294−299. doi: 10.3969/j.issn.1672-2132.2012.03.006

    SHU Qianjin,YUAN Guanglin,GUO Guangli,et al. Research on the composite foundation anti-deformation performance and optimal thickness of electricity transmission towers in tining subsidence area[J]. Journal of Disaster Prevention and Mitigation Engineering,2012,32(3):294−299. doi: 10.3969/j.issn.1672-2132.2012.03.006
    [36]
    张建强,杨 昆,王予东,等. 煤矿采空区地段高压输电线路铁塔地基处理的研究[J]. 电网技术,2006,30(2):30−34. doi: 10.3321/j.issn:1000-3673.2006.02.006

    ZHANG Jianqiang,YANG Kun,WANG Yudong,et al. Research on foundation treatment of high voltage transmission towers erected above goaf of coal mine[J]. Power System Technology,2006,30(2):30−34. doi: 10.3321/j.issn:1000-3673.2006.02.006
    [37]
    阳军生,杨元洪,晏 莉,等. 大断面隧道下穿既有高压输电铁塔施工方案比选及其应用[J]. 岩石力学与工程学报,2012,31(6):1184−1191. doi: 10.3969/j.issn.1000-6915.2012.06.013

    YANG Junsheng,YANG Yuanhong,YAN Li,et al. Construction scheme choice of laefe-span tunnels under-passing high voltage transmission tower and its application[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(6):1184−1191. doi: 10.3969/j.issn.1000-6915.2012.06.013
    [38]
    张佰庆,康宇斌,谢 伟,等. 临接高速公路的输电铁塔基础改造加固研究[J]. 电力安全技术,2016,18(3):37−41. doi: 10.3969/j.issn.1008-6226.2016.03.011

    ZHANG Baiqing,KANG Yubin,XIE Wei,et al. Research on reconstruction and strengthening of transmission tower foundation adjacent to expressway[J]. Electric Safety Technology,2016,18(3):37−41. doi: 10.3969/j.issn.1008-6226.2016.03.011
    [39]
    王新武,钱玉水. 送电线路铁塔基础不均匀沉降纠偏技术研究[J]. 山西建筑,2013,39(31):74−75,162. doi: 10.13719/j.cnki.cn14-1279/tu.2013.31.040

    WANG Xinwu,QIAN Yushui. Study on deflection rectification for uneven settlement of electric tower foundation[J]. Shanxi Architecture,2013,39(31):74−75,162. doi: 10.13719/j.cnki.cn14-1279/tu.2013.31.040
    [40]
    刘毓氚,刘祖德. 输电线路倾斜铁塔原位加固纠偏关键技术研究[J]. 岩土力学,2008,29(1):173−176. doi: 10.3969/j.issn.1000-7598.2008.01.032

    LIU Yuchuan,LIU Zude. Study on stabilization and rectification technology for inclined transmission tower[J]. Rock and Soil Mechanics,2008,29(1):173−176. doi: 10.3969/j.issn.1000-7598.2008.01.032
    [41]
    王双明,孙 强,乔军伟,等. 论煤炭绿色开采的地质保障[J]. 煤炭学报,2020,45(1):8−15. doi: 10.13225/j.cnki.jccs.YG19.1758

    WANG Shuanging,SUN Qiang,QIAO Junwei,et al. Geological guarantee of coal green mining[J]. Journal of China Coal Society,2020,45(1):8−15. doi: 10.13225/j.cnki.jccs.YG19.1758
    [42]
    钱鸣高,许家林,王家臣. 再论煤炭的科学开采[J]. 煤炭学报,2018,43(1):1−13.

    QIAN Minggao,XU Jialin,WANG Jiachen. Further on the sustainable mining of coal[J]. Journal of China Coal Society,2018,43(1):1−13.
    [43]
    张吉雄,巨 峰,李 猛,等. 煤矿矸石井下分选协同原位充填开采方法[J]. 煤炭学报,2020,45(1):131−140.

    ZHANG Jixing,JU Feng,LI Meng,et al. Method of coal gangue separation and coordinated in-situ backfill mining[J]. Journal of China Coal Society,2020,45(1):131−140.
    [44]
    范立民. 保水采煤的科学内涵[J]. 煤炭学报,2017,42(1):27−35.

    FAN Limin. Scientific connotation of water-preserved min-ing[J]. Journal of China Coal Society,2017,42(1):27−35.
    [45]
    刘文生. 覆岩离层注浆充填保护地面高压线路试验研究[J]. 煤炭学报,2001,26(3):236−239. doi: 10.3321/j.issn:0253-9993.2001.03.003

    LIU Wensheng. Experimental study on protecting high voltageelectric power lines by grouting separated strata zone in overburden[J]. Journal of China Coal Society,2001,26(3):236−239. doi: 10.3321/j.issn:0253-9993.2001.03.003
    [46]
    胡振琪,多玲花,王晓彤. 采煤沉陷地夹层式充填复垦原理与方法[J]. 煤炭学报,2018,43(1):198−206. doi: 10.13225/j.cnki.jccs.2017.4003

    HU Zhenqi,DUO Linghua,WANG Xiaotong. Principle and method of reclaiming subsidence land with inter-layers of filling materals[J]. Journal of China Coal Society,2018,43(1):198−206. doi: 10.13225/j.cnki.jccs.2017.4003

Catalog

    Article views (255) PDF downloads (223) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return