ZHANG Hongwei,LI Sheng,HAN Jun,et al. Geo-dynamic division and its application in study of rock burst[J]. Coal Science and Technology,2023,51(1):191−202
. DOI: 10.13199/j.cnki.cst.2022-1589Citation: |
ZHANG Hongwei,LI Sheng,HAN Jun,et al. Geo-dynamic division and its application in study of rock burst[J]. Coal Science and Technology,2023,51(1):191−202 . DOI: 10.13199/j.cnki.cst.2022-1589 |
Rock burst, one of the major dynamic disasters in coal mine, which is the energy sudden release accumulated in coal and rock under elastic deformation. According to the academic viewpoint of geo-dynamic division, the internal dynamic action such as modern geological tectonic movement and tectonic stress field have an important influence on the preparation, occurrence and development of dynamic disasters in coal mines. Geo-dynamic division method is mainly used to research the impact of internal dynamic geological processes on human activities in engineerings, and it is mainly used to research dynamic disasters such as rock burst under the influence of modern tectonic movements in the field of coal mining. According to the characteristics of tectonic movement and tectonic form in the mainland of China, the geo-dynamic division researching team, Liaoning Technical University, has expanded the content of geo-dynamic division after the research and practical application on the basis of the geo-dynamic division method with fault block structure division as the core content extensively for more than 30 years, which was established by academicians I.M. Batugina and I.M. Petukhov in Russia. After that, the evaluation method of geo-dynamic environment, the analysis method of coal-rock dynamic system and energy characteristics, and the multi-factor pattern recognition method of dynamic disasters in coal mines were established. The research team developed the rock mass stress analysis system and the geo-dynamic division information management system, which enriched and deepened the theory and methods of geo-dynamic division, and further created a new system of geo-dynamic division, which providing a new research method for the risk prediction and prevention of dynamic disasters in coal mines such as rock burst, coal and gas outburst. The geo-dynamic division method and some application results in rock burst were introduced. Firstly, based on the analysis method of coal-rock dynamic system in geo-dynamic division, the “upper limit value of damage zone radius” was determined as the reference value of advance support range in working faces with rockburst risk, which provided a basis for determining the advance support range of rockburst mines. The “upper limit value of influence zone radius” was determined as the reference value of influence range of working face mining in rockburst mines, which provided a basis for the determination of the distance between two working faces. Secondly, based on the multi factor pattern recognition method of geo-dynamic division, with the support of the geo-dynamic division information system, we have realized the refined prediction of rockburst risk by units. We can provide more accurate spatial location of rockburst risk area and more accurate prediction results of rockburst risk degree for the mines, thus improving the accuracy and timeliness of rockburst risk prediction in coal mines. The geo-dynamic division method has been widely used in the risk prediction and prevention of dynamic disasters in more than 40 coal mines, such as Yima, Hebi, Hegang, Shuangyashan and other mining areas in China.
[1] |
BUKOWSKA M. The probability of rockburst occurrence in the Upper Silesian Coal Basin area dependent on natural mining conditions[J]. Journal of Mining Science,2006,42(6):570−577. doi: 10.1007/s10913-006-0101-0
|
[2] |
谢和平. 深部岩体力学与开采理论研究进展[J]. 煤炭学报,2019,44(5):1283−1305.
XIE Heping. Research review of the state key research development program of China: deep rock mechanics and mining theory[J]. Journal of China Coal Society,2019,44(5):1283−1305.
|
[3] |
阿维尔申. 冲击地压[M]. 北京: 煤炭工业出版社, 1959.
|
[4] |
COOK N G W,HOEK E,PRETORIUS J P,et al. Rock mechanics applied to study of rockbursts[J]. Journal of the Southern African Institute of Mining and Metallurgy,1966,66(10):436.
|
[5] |
COOK N G W. A note on rockburst considered as a problem of stability. Journal of the South African Institute of Mining and Metallurgy, 1965, (65): 437-446.
|
[6] |
BRAUNER G. Kritische spannungen in kohlenflozen[J]. Gluckauf, 1975.
|
[7] |
佩图霍夫И. М. 冲击地压和突出的力学计算方法[M]. 北京: 煤炭工业出版社, 1994.
|
[8] |
章梦涛. 冲击地压失稳理论与数值模拟计算[J]. 岩石力学与工程学报,1987,6(3):197−204.
ZHANG Mengtao. Instability theory and mathematical model for coal/rock bursts[J]. Chinese Journal of Rock Mechanics and Engineering,1987,6(3):197−204.
|
[9] |
谢和平,PARISEAU W G. 岩爆的分形特征及机理[J]. 岩石力学与工程学报,1993,12(1):28−37.
XIE Heping,PARISEAU W G. Fractal character and mechanism of rock bursts[J]. Chinese Journal of Rock Mechanics and Engineering,1993,12(1):28−37.
|
[10] |
齐庆新,毛德兵,王永秀. 冲击地压非线性非连续性特征[J]. 岩土力学,2003,24(S1):575−579.
QI Qingxin,MAO Debing,WANG Yongxiu. A study of nonlinear and discontinuous characters of rockburst[J]. Rock and Soil Mechanics,2003,24(S1):575−579.
|
[11] |
潘一山,李忠华,章梦涛. 我国冲击地压分布、类型、机理及防治研究[J]. 岩石力学与工程学报,2003,22(11):1844−1851. doi: 10.3321/j.issn:1000-6915.2003.11.019
PAN Yishan,LI Zhonghua,ZHANG Mengtao. Distribution type mechanism and prevention of rock brust in China[J]. Chinese Journal of Rock Mechanics and Engineering,2003,22(11):1844−1851. doi: 10.3321/j.issn:1000-6915.2003.11.019
|
[12] |
DOU L,CHEN T,GONG S,et al. Rockburst hazard determination by using computed tomography technology in deep workface[J]. Safety Science,2012,50(4):736−740. doi: 10.1016/j.ssci.2011.08.043
|
[13] |
赵阳升,冯增朝,万志军. 岩体动力破坏的最小能量原理[J]. 岩石力学与工程学报,2003,22(11):1781−1783. doi: 10.3321/j.issn:1000-6915.2003.11.005
ZHAO Yangsheng. FENG Zengzao, WAN Zhijun. Minimum energy principle of the rock body impacting destroy[J]. Chinese Journal of Rock Mechanics and Engineering,2003,22(11):1781−1783. doi: 10.3321/j.issn:1000-6915.2003.11.005
|
[14] |
姜耀东,潘一山,姜福兴,等. 我国煤炭开采中的冲击地压机理和防治[J]. 煤炭学报,2014,39(2):205−213.
JIANG Yaodong,PAN Yishan,JIANG Fuxing,et al. State of the art review on mechanism and prevention of coal bumps in China[J]. Journal of China Coal Society,2014,39(2):205−213.
|
[15] |
姜福兴,冯 宇,KOUAME K J A,等. 高地应力特厚煤层“蠕变型”冲击机理研究[J]. 岩土工程学报,2015,37(10):1762−1768. doi: 10.11779/CJGE201510003
JIANG Fuxing,FENG Yu,KOUAME K J A,et al. Mechanism of creep-induced rock burst in extra-thick coal seam under high ground stress[J]. Chinese Journal of Geotechnical Engineering,2015,37(10):1762−1768. doi: 10.11779/CJGE201510003
|
[16] |
谭云亮,郭伟耀,赵同彬,等. 深部煤巷帮部失稳诱冲机理及“卸-固”协同控制研究[J]. 煤炭学报,2020,45(1):66−81.
TAN Yunliang,GUO Weiyao,ZHAO Tongbin,et al. Coal rib burst mechanism in deep roadway and “stress relief-support reinforcement” synergetic control and prevention[J]. Journal of China Coal Society,2020,45(1):66−81.
|
[17] |
潘俊锋. 煤矿冲击地压启动理论及其成套技术体系研究[J]. 煤炭学报,2019,44(1):173−182.
PAN Junfeng. Theory of rockburst start-up and its complete technology system[J]. Journal of China Coal Society,2019,44(1):173−182.
|
[18] |
潘俊锋,齐庆新,刘少虹,等. 我国煤炭深部开采冲击地压特征、类型及分源防控技术[J]. 煤炭学报,2020,45(1):111−121.
PAN Junfeng,QI Qingxin,LIU Shaohong,et al. Characteristics, types and prevention and control technology of rockburst in deep coal mining in China[J]. Journal of China Coal Society,2020,45(1):111−121.
|
[19] |
张宏伟,李 胜. 煤与瓦斯突出危险性的模式识别和概率预测[J]. 岩石力学与工程学报,2005,24(19):179−183. doi: 10.3321/j.issn:1000-6915.2005.19.029
ZHANG Hongwei,LI Sheng. Pattern recognition and probability prediction of coal and gas outburst risk[J]. Journal of Rock Mechanics and Engineering,2005,24(19):179−183. doi: 10.3321/j.issn:1000-6915.2005.19.029
|
[20] |
张宏伟, 韩 军, 宋卫华, 等. 地质动力区划[M]. 北京: 煤炭工业出版社, 2009.
|
[21] |
韩 军,张宏伟,宋卫华,等. 构造凹地煤与瓦斯突出发生机制及其危险性评估[J]. 煤炭学报,2011,36(S1):108−113.
HAN Jun,ZHANG Hongwei,SONG Weihua,et al. Coal and gas outburst mechanism and risk analysis of tectonic concave[J]. Journal of China Coal Society,2011,36(S1):108−113.
|
[22] |
宋卫华,张宏伟. 构造区域应力场与煤与瓦斯突出区域预测[J]. 矿业安全与环保,2007,34(4):7−12. doi: 10.3969/j.issn.1008-4495.2007.04.003
SONG Weihua,ZHANG Hongwei. Stress field in tectonic region and regional prediction of coal and gas outburst[J]. Mining Safety and Environment Protection,2007,34(4):7−12. doi: 10.3969/j.issn.1008-4495.2007.04.003
|
[23] |
张宏伟. 矿井动力灾害的地质动力环境分析与评估[C]//第一届中俄矿山深部开采岩石动力学高层论坛论文集. 阜新: 辽宁工程技术大学, 2011.
|
[24] |
兰天伟,张宏伟,韩 军,等. 京西地质构造对矿井动力灾害的影响[J]. 煤田地质与勘探,2012,40(6):17−19,43.
LAN Tianwei,ZHANG Hongwei,HAN Jun,et al. The influence of geological structure on dynamic disaster in coal mines in West Beijing[J]. Coal Geology & Exploration,2012,40(6):17−19,43.
|
[25] |
荣 海,张宏伟,梁 冰,等. 煤岩动力系统失稳机理[J]. 煤炭学报,2017,42(7):1663−1671.
RONG Hai,ZHANG Hongwei,LIANG Bing,et al. Instability mechanism of dynamic system of coal and rock[J]. Journal of China Coal Society,2017,42(7):1663−1671.
|
[26] |
张宏伟,刘少伟,方 众. 东欢坨矿地应力测量及应力场分析[J]. 辽宁工程技术大学学报(自然科学版),2002,21(1):15−18. doi: 10.3969/j.issn.1008-0562.2002.01.005
ZHANG Hongwei,LIU Shaowei,FANG Zong. In site stress measurement and stress field analysis of Donghuantuo mine[J]. Journal of Liaoning Technical University (Natural Science),2002,21(1):15−18. doi: 10.3969/j.issn.1008-0562.2002.01.005
|
[27] |
张宏伟,邓智毅. 地质动力区划在岩体应力预测中的应用[J]. 安徽理工大学学报(自然科学版),2004,24(3):9−13.
ZHANG Hongwei,DENG Zhiyi. Application of geodynamic zoning in rock stress prediction[J]. Journal of Anhui University of Science and Technology (Natural Science Edition),2004,24(3):9−13.
|
[28] |
钱鸣高, 许家林, 王家臣. 矿山压力与岩层控制 第3版[M]. 徐州: 中国矿业大学出版社, 2021.
|
[29] |
窦林名. 冲击地压危险性评定的综合指数法[C]//高效洁净开采与支护技术研讨会论文集. 苏州: 中国煤炭学会, 2000.
|
[30] |
王鸿祯. 地球动力学的演化观[J]. 科学中国人, 1999(2): 8-12.
WANG Hongzhen. Evolutionary view of geodynamics [J]. Scientific Chinese, 1999(2): 8-12.
|
[31] |
韩 军. 煤矿冲击地压地质动力环境研究[J]. 煤炭科学技术,2016,44(6):83−88,105.
HAN Jun. Study on geologic dynamic environment of mine strata pressure bump[J]. Coal Science and Technology,2016,44(6):83−88,105.
|
[32] |
И.М.Батугина, И.М.Петухов. Геодинамическое районирование месторождений при проектировании и эксплуатации рудников[M]. Недра, 1988.
|
[33] |
张宏伟, 淮南矿区地质动力区划[M]. 北京: 煤炭工业出版社, 2004.
|
[34] |
张宏伟,孟庆男,韩 军,等. 地质动力区划在冲击地压矿井中的应用[J]. 辽宁工程技术大学学报(自然科学版),2016,35(5):449−455. doi: 10.11956/j.issn.1008-0562.2016.05.001
ZHANG Hongwei,MENG Qingnan,HAN Jun,et al. Application of the geological dynamic division in rock burst coal mine[J]. Journal of Liaoning Technical University:Natural Science,2016,35(5):449−455. doi: 10.11956/j.issn.1008-0562.2016.05.001
|
[35] |
荣 海,于世棋,张宏伟,等. 基于煤岩动力系统能量的冲击地压矿井临界深度判别[J]. 煤炭学报,2021,46(4):1263−1270.
RONG Hai,YU Shiqi,ZHANG Hongwei,et al. Determination of critical depth in rockburst mine based on the energy of coal-rock dynamic system[J]. Journal of China Coal Society Society,2021,46(4):1263−1270.
|
[36] |
兰天伟,张宏伟,李 胜,等. 矿井冲击地压危险性预测的多因素模式识别[J]. 中国安全科学学报,2013,23(3):33−38.
LAN Tianwei,ZHANG Hongwei,LI Sheng,et al. Multifactor Pattern Recognition Method for Predicting Mine Rock Burst Risk[J]. China Safety Science Journal,2013,23(3):33−38.
|
[37] |
张宏伟,朱 峰,韩 军,等. 冲击地压的地质动力条件与监测预测方法[J]. 煤炭学报,2016,41(3):545−551.
ZHANG Hongwei,ZHU Feng,HAN Jun,et al. Geological dynamic conditions and forecast technology for rock bursts[J]. Journal of China Coal Society,2016,41(3):545−551.
|
[38] |
李 胜,张宏伟. 煤与瓦斯突出区域预测信息系统开发[J]. 辽宁工程技术大学学报,2006(S1):37−39.
LI Sheng,ZHANG Hongwei. Development of coal and gas outburst regional prediction information system[J]. Journal of Liaoning Technical University,2006(S1):37−39.
|
1. |
田燚,王沉,刘雪岭,舒仕海,阮毅,王玉丽,彭英健,邓小虎. 基于博弈论组合赋权-云模型的煤与瓦斯突出危险性评价. 煤炭技术. 2025(04): 180-185 .
![]() | |
2. |
梁跃辉,石必明,岳基伟,钟珍,韩奇峻,张铖铖,彭杰,张海卿,梅文强. 带压环境下煤体瓦斯解吸特性及模型. 煤炭学报. 2025(03): 1569-1582 .
![]() | |
3. |
薛伟超,周少玺,康宁. 杨河煤业22161工作面区域煤与瓦斯突出危险性预测研究. 中国煤炭地质. 2025(03): 35-39+44 .
![]() | |
4. |
刘艺,卢守青,赵康,郝从猛,秦玉金,撒占友,刘杰,张永亮,张荣. 基于CiteSpace的煤与瓦斯突出预测指标文献综述与研究进展. 煤矿安全. 2025(05): 30-39 .
![]() | |
5. |
郭盼盼,毛润奇. 玉溪煤矿3号煤层局部突出预测敏感指标考察研究. 西部探矿工程. 2024(01): 64-66 .
![]() | |
6. |
焦先军,童校长,李明强. 开采保护层与预抽煤层瓦斯防突效果分析. 煤炭技术. 2024(02): 118-120 .
![]() | |
7. |
曹建军,刘军,王中华. 陕西省煤矿瓦斯灾害防治现状及对策研究. 中国煤炭. 2024(02): 35-43 .
![]() | |
8. |
王亮,李子威,郑思文,安丰华,赵伟,吴淞玮. 颗粒煤基质尺度计算新方法及应用. 煤炭科学技术. 2024(02): 115-125 .
![]() | |
9. |
郭彦磊,刘海滨,赵乾,龚凯,陈建,杜嘉奇. 煤与瓦斯突出过程气-固颗粒抛出规律及突出矿井风险等级划分方法. 煤矿安全. 2024(05): 51-60 .
![]() | |
10. |
胡金春,吕士磊,兰红,陈忠林,陆春辉. 龙潭组煤层群底组煤层综采工作面卸压瓦斯来源分析研究. 陕西煤炭. 2024(12): 110-113 .
![]() | |
11. |
张超林,刘明亮,王恩元,王培仲,姜巧真,曾伟. 煤层渗透性对煤与瓦斯突出的影响规律及控制机理. 煤炭学报. 2024(12): 4842-4854 .
![]() | |
12. |
张亚洲,单川. 敏感指标对瓦斯含量响应的变化规律研究. 能源与节能. 2023(02): 58-60 .
![]() | |
13. |
肖乔. 方山新井二_1煤层掘进工作面煤与瓦斯突出预测敏感指标及临界值确定. 煤炭技术. 2023(02): 122-125 .
![]() | |
14. |
杨三萍,刘鹏珍,卢卫永. 不同黏结剂掺量条件下型煤试样三轴压缩试验研究. 采矿与岩层控制工程学报. 2023(02): 46-54 .
![]() | |
15. |
孙娈娈,王中华. 突出煤层区域预测瓦斯含量临界值研究. 山东煤炭科技. 2023(03): 110-112 .
![]() | |
16. |
何志刚,邢祥,王振刚,谷晓亮. 红岭煤矿工作面突出预测敏感指标测定及应用. 中国矿山工程. 2023(02): 53-58+69 .
![]() | |
17. |
徐耀松,白济宁,王雨虹,阎馨,王丹丹. 基于CEEMDAN-DA-GRU的瓦斯涌出量预测模型. 传感技术学报. 2023(03): 441-448 .
![]() | |
18. |
李延河. 地面井分区式瓦斯抽采技术体系及工程实践. 煤炭科学技术. 2023(03): 100-108 .
![]() | |
19. |
杨琪,于岩斌,崔文亭,高成伟,张鑫,申家龙. 单轴压缩下煤岩细观结构参数表征及演化规律. 煤炭科学技术. 2023(04): 88-95 .
![]() | |
20. |
郭鑫. 寺河煤矿东井3号煤层突出预测敏感性指标研究. 煤炭与化工. 2023(06): 114-119 .
![]() | |
21. |
夏治华,汪国良. 兴隆煤矿工作面突出预测敏感指标及临界值研究. 江西煤炭科技. 2023(03): 136-139 .
![]() | |
22. |
梁运培,郑梦浩,李全贵,毛树人,栗小雨,李建波,周俊江. 我国煤与瓦斯突出预测与预警研究现状. 煤炭学报. 2023(08): 2976-2994 .
![]() | |
23. |
郭武奎,靳鹏. 大水头煤矿一采区瓦斯压力临界值考察研究. 山西化工. 2023(10): 127-130 .
![]() | |
24. |
张天军,孟钰凯,庞明坤,张磊,武晋宇. 有效应力对孔周破裂煤体渗透率演化规律的影响. 煤炭科学技术. 2023(S1): 122-131 .
![]() | |
25. |
谢亚东,吴琪璇,李作泉,张建江,权继业. 采动应力与工作面突出指标相关性分析. 中国安全科学学报. 2023(S2): 96-99 .
![]() | |
26. |
唐巨鹏,任凌冉,潘一山,张昕. 高地应力条件煤与瓦斯突出模拟试验研究. 煤炭科学技术. 2022(02): 113-121 .
![]() | |
27. |
周礼杰,陈亮,程志恒,艾国,孔德中,王蕾,王宏冰,郭凯. 突出厚煤层沿空掘巷煤柱留设宽度优化研究. 煤炭科学技术. 2022(03): 92-101 .
![]() | |
28. |
吕情绪,肖剑儒,满洋. 低瓦斯煤层高强综放开采工作面合理长度确定. 煤矿安全. 2022(05): 188-193 .
![]() | |
29. |
成小雨,龚选平,尉瑞,高涵,赵刚. 考虑煤体粒度的落煤瓦斯涌出预测模型研究. 中国安全生产科学技术. 2022(07): 61-67 .
![]() | |
30. |
朱墨然,王麒翔,张庆华. 多源数据驱动的防突预警指标自适应技术研究. 煤炭科学技术. 2022(08): 75-81 .
![]() | |
31. |
郝建峰,梁冰,孙维吉,石占山,施永威,赵航. 煤与瓦斯的热流固耦合关系研究现状及展望. 采矿与安全工程学报. 2022(05): 1051-1060+1070 .
![]() | |
32. |
杨威. 东曲矿瓦斯突出敏感指标预测及临界值研究. 煤. 2022(11): 38-39+48 .
![]() | |
33. |
迟羽淳,邹永洺. 敏感指标预测煤层瓦斯异常涌出应用分析. 中国矿业. 2022(11): 117-122 .
![]() | |
34. |
王林杉. 河南省某矿二_1煤层突出预测敏感指标及临界值研究. 内蒙古煤炭经济. 2022(20): 5-8 .
![]() | |
35. |
周银波,李晓丽,李晗晟,王佳乐,毛淑星,王世杰. 煤体吸附变形对3种气体渗透率演化的影响. 煤矿安全. 2021(11): 16-21 .
![]() | |
36. |
单大阔. 瓦斯为突出主导因素的煤层突出预测敏感指标及临界值考察. 煤. 2021(12): 20-22+93 .
![]() | |
37. |
孙际宏,左安家,魏超,陈江龙. 煤层突出危险性预测敏感指标考察确定. 华北科技学院学报. 2021(05): 33-39 .
![]() |