SHANG Fuhua,MIAO Ke,ZHU Yanming,et al. Pore structure, adsorption capacity and their controlling factors of shale in complex structural area[J]. Coal Science and Technology,2023,51(2):269−282
. DOI: 10.13199/j.cnki.cst.2022-1576Citation: |
SHANG Fuhua,MIAO Ke,ZHU Yanming,et al. Pore structure, adsorption capacity and their controlling factors of shale in complex structural area[J]. Coal Science and Technology,2023,51(2):269−282 . DOI: 10.13199/j.cnki.cst.2022-1576 |
With the continuous exploration and development of shale gas in China, the complex structure area has become an important direction for further exploration. The Longmaxi shale samples collected from complex structure area in Northeast Chongqing were conducted scanning electron microscopy, mercury intrusion, low-pressure gas adsorption, isothermal adsorption. This study systematically characterized the pore structure and adsorption capacity of Longmaxi shale in different tectonic belts, analyzed the influencing factors of pore structure and adsorption capacity, and revealed the action mechanism of tectonic deformation on pore structure and adsorption capacity. The results showed that ① OM pores are relatively developed in the Longmaxi shales collected from thrust slip belt and thrust fold belt, but not in the Longmaxi shale from imbricate thrust belt, where mineral-related pores and fractures are mainly developed. ② Micropores (<2 nm), mesopores (2~50 nm) and macropores (>50 nm) are developed in the Longmaxi shale in the thrust slip belt, while mesopores and macropores are relatively developed in the thrust fold belt and imbricate thrust belt. ③ The “excess” adsorption capacity of Longmaxi shale rapidly increases with the increased pressure, and slowly decreases after reaching the maximum (6−9 MPa), while the absolute adsorption capacity monotonously increases with the increased pressure. ④ The pore structure is mainly controlled by TOC (Total Organic Carbon) and clay mineral content, and the adsorption capacity is closely related to TOC and micropores. In addition, tectonic deformation can also affect the adsorption capacity by modifying the pore structure. This study has a very important guiding significance for the evaluation and development of shale gas resources in complex tectonic areas.
[1] |
GUO Xusheng,HU Dongfeng,LI Yuping,et al. Geological factors controlling shale gas enrichment and high production in Fuling shale gas field[J]. Petroleum Exploration and Development,2017,44(4):513−523. doi: 10.1016/S1876-3804(17)30060-5
|
[2] |
ZOU Caineng,ZHU Rukai,CHEN Zhongqiang,et al. Organic-matter-rich shales of China[J]. Earth-Science Reviews,2019,189:51−78. doi: 10.1016/j.earscirev.2018.12.002
|
[3] |
ZOU Caineng,DONG Dazhong,WANG Yuman,et al. Shale gas in China: characteristics, challenges and prospects (I)[J]. Petroleum Exploration and Development,2015,42(6):753−767. doi: 10.1016/S1876-3804(15)30072-0
|
[4] |
MA Xinhua,WANG Hongyan,ZHOU Shangwen,et al. Deep shale gas in China: geological characteristics and development strategies[J]. Energy Reports,2021,7:1903−1914. doi: 10.1016/j.egyr.2021.03.043
|
[5] |
ZHAO Jinzhou,REN Lan,JIANG Tingxue,et al. Ten years of gas shale fracturing in China: review and prospect[J]. Natural Gas Industry B,2021,41(8):121−142.
|
[6] |
梁 峰,拜文华,邹才能,等. 渝东北地区巫溪 2 井页岩气富集模式及勘探意义[J]. 石油勘探与开发,2016,43(3):386−394. doi: 10.1016/S1876-3804(16)30045-3
LIANG Feng,BAI Wenhua,ZOU Caineng,et al. Shale gas enrichment pattern and exploration significance of Well WuXi-2 in northeast Chongqing, NE Sichuan Basin[J]. Petroleum Exploration and Development,2016,43(3):386−394. doi: 10.1016/S1876-3804(16)30045-3
|
[7] |
MA Yong,ARDAKANI Omid H,ZHONG Ningning,et al. Possible pore structure deformation effects on the shale gas enrichment: an example from the Lower Cambrian shales of the Eastern Upper Yangtze Platform, South China[J]. International Journal of Coal Geology,2020,217:103349. doi: 10.1016/j.coal.2019.103349
|
[8] |
CURTIS John B. Fractured shale-gas systems[J]. AAPG bulletin,2020,86(11):1921−1938.
|
[9] |
LOUCKS Robert G,RUPPEL Stephen C,WANG Xiangzeng,et al. Pore types, pore-network analysis, and pore quantification of the lacustrine shale-hydrocarbon system in the Late Triassic Yanchang Formation in the southeastern Ordos Basin, China[J]. Interpretation,2017,5(2):63−79. doi: 10.1190/INT-2016-0094.1
|
[10] |
刘丹丹,王 茗,赵天垚,等. 五峰组—龙马溪组页岩储层纳米孔隙结构分类量化表征−以巫溪地区WX-1井为例[J]. 非常规油气,2023,10(1):93−103. doi: 10.19901/j.fcgyq.2023.01.12
LIU Dandan,WANG Ming,ZHAO Tianyao,et al. Classification and quantitative characterization of nano-scale pore structure in shale reservoirs of Wufeng-Longmaxi Formation: a case study of well WX-1 in Wuxi Area[J]. Unconventional Oil & Gas,2023,10(1):93−103. doi: 10.19901/j.fcgyq.2023.01.12
|
[11] |
朱炎铭,王 阳,陈尚斌,等. 页岩储层孔隙结构多尺度定性-定量综合表征: 以上扬子海相龙马溪组为例[J]. 地学前缘,2016,23(1):154−163.
ZHU Yanming,WANG Yang,CHEN Shangbin,et al. Qualitative-quantitative multiscale characteriration of pore structures in shalereservoirs: a case study of Longmaxi Formation in the Upper Yangtze area[J]. Earth Science Frontiers,2016,23(1):154−163.
|
[12] |
ZHU Hongjian,JU Yiwen,QI Yu,et al. Impact of tectonism on pore type and pore structure evolution in organic-rich shale: Implications for gas storage and migration pathways in naturally deformed rocks[J]. Fuel,2018,228:272−289. doi: 10.1016/j.fuel.2018.04.137
|
[13] |
LOUCKS Robert G,REED Robert M,RUPPEL Stephen C,et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG bulletin,2012,96(6):1071−1098. doi: 10.1306/08171111061
|
[14] |
JARVIE Daniel M,HILL Ronald J,RUBLE Tim E,et al. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG bulletin,2007,91(4):475−499. doi: 10.1306/12190606068
|
[15] |
汤庆艳,张铭杰,张同伟,等. 生烃热模拟试验方法述评[J]. 西南石油大学学报 (自然科学版),2013,35(1):52.
TANG Qingyan,ZHANG Mingjie,ZHANG Tongwei,et al. A review on pyrolysis experimentation on hydrocarbon generation[J]. Journal of Southwest Petroleum University (Science & Technology Edition),2013,35(1):52.
|
[16] |
党 伟, 张金川, 聂海宽, 等. 页岩油微观赋存特征及其主控因素: 以鄂尔多斯盆地延安地区延长组7段3亚段陆相页岩为例[J]. 石油学报, 2022, 43(4): 507−523.
DANG Wei, ZHANG Jinchuan, NIE Haikuan, et al. Microscopic occurrence characteristics of shale oil and their main controlling factors: a case study of the3rd submember continental shale of Member 7 of Yanchang Formation in Yan'an area. Ordos Basin [J]. Acta Petrolei Sinica, 2022, 43(4): 507−523.
|
[17] |
DONG Tian,HARRIS Nicholas B,MCMILLAN Julia M,et al. A model for porosity evolution in shale reservoirs: An example from the Upper Devonian Duvernay Formation, Western Canada Sedimentary Basin[J]. AAPG Bulletin,2019,103(5):1017−1044. doi: 10.1306/10261817272
|
[18] |
赵卫卫,李富康,单长安,等. 延安地区延长组长7段陆相泥页岩孔隙类型及其吸附特征研究[J]. 非常规油气,2023,10(1):32−43. doi: 10.19901/j.fcgyq.2023.01.05
ZHAO Weiwei,LI Fukang,SHAN Chang’an,et al. Pore types and adsorption characteristics of continental mud shale in Chang7 member of Yanchang Formation of Yan'an Area[J]. Unconventional Oil & Gas,2023,10(1):32−43. doi: 10.19901/j.fcgyq.2023.01.05
|
[19] |
LIU Bei,MASTALERZ Maria,SCHIEBER Juergen. SEM petrography of dispersed organic matter in black shales: A review[J]. Earth-Science Reviews,2022,224:103874. doi: 10.1016/j.earscirev.2021.103874
|
[20] |
龚 卓,陈尚斌,李学元,等. 基于AFM的巫溪2井页岩储层孔隙特征研究[J]. 煤炭科学技术,2022,50(7):216−223.
GONG Zhuo,CHEN Shangbin,LI Xueyuan,et al. Research on pore characteristics of shale reservoir in Wuxi No. 2Well based on AFM[J]. Coal Science and Technology,2022,50(7):216−223.
|
[21] |
SHANG Fuhua,ZHU Yanming,GAO Haitao,et al. Relationship between tectonism and composition and pore characteristics of shale reservoirs[J]. Geofluids,2020:1−14.
|
[22] |
刘旭彤,赵迪斐. 过渡相页岩储层纳米矿物孔隙的成因-形貌类型及系统分类:以太原西山古交矿区山西组页岩为例[J]. 非常规油气,2023,10(1):77−83,103. doi: 10.19901/j.fcgyq.2023.01.10
LIU Xutong,ZHAO Difei. Genesis, morphological types and systematic classification of nano-mineral pores in transitional facies shale reservoirs: A case study of Shanxi Formation shale in Xishan Gujiao mining area, Taiyuan[J]. Unconventional Oil & Gas,2023,10(1):77−83,103. doi: 10.19901/j.fcgyq.2023.01.10
|
[23] |
李恒超,刘大永,彭平安,等. 构造作用对重庆及邻区龙马溪组页岩储集空间特征的影响[J]. 天然气地球科学,2015,26(9):1705−1711.
LI Hengchao,LIU Dayong,PENG Pingan,et al. Tectonic impact on reservoir character of Chongqing and its neighbor area[J]. Natural Gas Geoscience,2015,26(9):1705−1711.
|
[24] |
刘文平,张成林,高贵冬,等. 四川盆地龙马溪组页岩孔隙度控制因素及演化规律[J]. 石油学报,2017,38(2):175−184. doi: 10.7623/syxb201702005
LIU Wenping,ZHANG Chenglin,GAO Guidong,et al. Controlling factors and evolution laws of shale porosity in Longmaxi Formation, Sichuan Basin[J]. Acta Petrolei Sinica,2017,38(2):175−184. doi: 10.7623/syxb201702005
|
[25] |
MA Yong,ZHONG Ningning,LI Dahua,et al. Organic matter/clay mineral intergranular pores in the Lower Cambrian Lujiaping Shale in the north-eastern part of the upper Yangtze area, China: a possible microscopic mechanism for gas preservation[J]. International Journal of Coal Geology,2015,137:38−54. doi: 10.1016/j.coal.2014.11.001
|
[26] |
ROSS Daniel J K,BUSTIN R Marc. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs[J]. Marine and Petroleum Geology,2009,26(6):916−927. doi: 10.1016/j.marpetgeo.2008.06.004
|
[27] |
REXER Thomas F T,BENHAM Michael J,Aplin Andrew C,et al. Methane adsorption on shale under simulated geological temperature and pressure conditions[J]. Energy & Fuels,2013,27(6):3099−3109.
|
[28] |
WANG Yang,ZHU Yanming,LIU Shimin,et al. Methane adsorption measurements and modeling for organic-rich marine shale samples[J]. Fuel,2016,172:301−309. doi: 10.1016/j.fuel.2015.12.074
|
[29] |
SHANG Fuhua,ZHU Yanming,HU Qinhong,et al. Characterization of methane adsorption on shale of a complex tectonic area in Northeast Guizhou, China: Experimental results and geological significance[J]. Journal of Natural Gas Science and Engineering,2020,84:103676. doi: 10.1016/j.jngse.2020.103676
|
[30] |
GASPARIK Matus,GHANIZADEH Amin,BERTIER Pieter,et al. High-pressure methane sorption isotherms of black shales from the Netherlands[J]. Energy & fuels,2012,26(8):4995−5004.
|
[31] |
GASPARIK Matus,BERTIER Pieter,GENSTERBLUM Yves,et al. Geological controls on the methane storage capacity in organic-rich shales[J]. International Journal of Coal Geology,2014,123:34−51. doi: 10.1016/j.coal.2013.06.010
|
[32] |
CHALMERS Gareth R L,BUSTIN R Marc. Lower Cretaceous gas shales in northeastern British Columbia, Part I: geological controls on methane sorption capacity[J]. Bulletin of Canadian Petroleum Geology,2008,56(1):1−21. doi: 10.2113/gscpgbull.56.1.1
|
[33] |
ZHOU Shangwen,XUE Huaqing,NING Yang,et al. Experimental study of supercritical methane adsorption in Longmaxi shale: Insights into the density of adsorbed methane[J]. Fuel,2018,211:140−148. doi: 10.1016/j.fuel.2017.09.065
|
[34] |
LOUCKS Robert G,REED Robert M,RUPPEL Stephen C,et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale[J]. Journal of Sedimentary Research,2009,79(12):848−861. doi: 10.2110/jsr.2009.092
|
[35] |
CHALMERS Gareth R,BUSTIN R Marc,POWER Ian M. Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units[J]. AAPG Bulletin,2012,96(6):1099−1119. doi: 10.1306/10171111052
|
[36] |
MASTALERZ Maria,SCHIMMELMANN Arndt,DROBNIAK Agnieszka,et al. Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient: Insights from organic petrology, gas adsorption, and mercury intrusion[J]. AAPG Bulletin,2013,97(10):1621−1643. doi: 10.1306/04011312194
|
[37] |
GREGG Sideny John,SING Kenneth Stafford William. Adsorption surface area and porosity[J]. Journal of the Electrochemical society,1967,114(11):279Ca.
|
[38] |
SAKUROVS Richard,DAY Stuart,WEIR Steve,et al. Application of a modified Dubinin-Radushkevich equation to adsorption of gases by coals under supercritical conditions[J]. Energy & Fuels,2007,21(2):992−997.
|
[39] |
SIRCAR S. Gibbsian surface excess for gas adsorption revisited[J]. Industrial & Engineering Chemistry Research,1999,38(10):3670−3682.
|
[40] |
LANGMUIR Irving. The adsorption of gases on plane surfaces of glass, mica and platinum[J]. Journal of the American Chemical society,1918,40(9):1361−1403. doi: 10.1021/ja02242a004
|
[41] |
WANG Qingtao,WANG Taoli,LIU Wenping,et al. Relationships among composition, porosity and permeability of Longmaxi Shale reservoir in the Weiyuan Block, Sichuan Basin, China[J]. Marine and Petroleum Geology,2019,102:33−47. doi: 10.1016/j.marpetgeo.2018.12.026
|
[42] |
CHEN Zhiyuan,SONG Yan,JIANG Zhenxue,et al. Identification of organic matter components and organic pore characteristics of marine shale: a case study of Wufeng-Longmaxi shale in southern Sichuan Basin, China[J]. Marine and Petroleum Geology,2019,109:56−69. doi: 10.1016/j.marpetgeo.2019.06.002
|
[43] |
HU Guang,PANG Qian,JIAO Kun,et al. Development of organic pores in the Longmaxi Formation overmature shales: Combined effects of thermal maturity and organic matter composition[J]. Marine and Petroleum Geology,2020,116:104314. doi: 10.1016/j.marpetgeo.2020.104314
|
[44] |
MILLIKENilliken K L,RUDNICKI M,AWWILLER D N,et al. Organic matter–hosted pore system, Marcellus formation (Devonian), Pennsylvania[J]. AAPG Bulletin,2013,97(2):177−200. doi: 10.1306/07231212048
|
[45] |
JI Liming,ZHANG Tongwei,KITTY L Milliken,et al. Experimental investigation of main controls to methane adsorption in clay-rich rocks[J]. Applied Geochemistry,2012,27(12):2533−2545. doi: 10.1016/j.apgeochem.2012.08.027
|
[46] |
SANDER R,PAN Zhejun,CONNELL L D,et al. Controls on methane sorption capacity of Mesoproterozoic gas shales from the Beetaloo Sub-basin, Australia and global shales[J]. International Journal of Coal Geology,2018,199:65−90. doi: 10.1016/j.coal.2018.09.018
|
[47] |
HOU Yuguang,ZHANG Kunpeng,WANG Furong,et al. Structural evolution of organic matter and implications for graphitization in over-mature marine shales, south China[J]. Marine and Petroleum Geology,2019,109:304−316. doi: 10.1016/j.marpetgeo.2019.06.009
|
[48] |
LIANG Mingliang,WANG Zongxiu,GAO Li,et al. Evolution of pore structure in gas shale related to structural deformation[J]. Fuel,2017,197:310−319. doi: 10.1016/j.fuel.2017.02.035
|
[49] |
WANG Guochang. Deformation of organic matter and its effect on pores in mud rocks[J]. AAPG Bulletin,2020,104(1):21−36.
|
[50] |
EMMANUEL S,DAY-Stirrat R J. A framework for quantifying size dependent deformation of nano-scale pores in mudrocks[J]. Journal of applied geophysics,2012,86:29−35. doi: 10.1016/j.jappgeo.2012.07.011
|
1. |
王馨佩,刘成林,蒋立伟,冯德浩,邹辰,刘飞,李君军,贺昱搏,董明祥,焦鹏飞. 渝西大安地区五峰组-龙马溪组深层页岩微观孔隙结构与含气性控制因素. 石油与天然气地质. 2025(01): 230-245 .
![]() | |
2. |
洪林,刘文通,高大猛,梁伟,赵峻丹,车兴竺. 不同探针分子测试煤微观孔隙结构特征对比. 煤炭科学技术. 2025(04): 291-299 .
![]() | |
3. |
李遇,薛晓辉,张金彪,李金龙,胡琳,王玲,陈志军. 滇东北地区勺寨复向斜五峰组-龙马溪组页岩气地质特征及含气性控制因素. 煤炭科学技术. 2025(05): 255-264 .
![]() | |
4. |
于海成,张华. 张家口-怀来非常规天然气区块构造稳定性评价. 中国煤炭地质. 2024(01): 25-29+11 .
![]() | |
5. |
罗力元,李勇,何清波,李树新,李翔,时小松,路俊刚,陈世加,肖正录,尹相东. 鄂尔多斯盆地东缘海陆过渡相页岩原位含气性评价及其地质应用. 天然气地球科学. 2024(12): 2215-2227 .
![]() | |
6. |
付文鼎,尚福华,麻书玮,朱悦雯,戴涛杰,朱炎铭,苗科,闫静,高海涛,密文天. 渝东北地区龙马溪组页岩孔隙结构特征及其主控因素. 沉积与特提斯地质. 2024(04): 796-808 .
![]() | |
7. |
蔡来星,杨田,田景春,易娟子,任启强. 致密砂岩储层中黏土矿物发育特征及其生长机理研究进展. 沉积学报. 2023(06): 1859-1889 .
![]() |