Citation: | FANG Shizheng,YANG Renshu,LI Weiyu,et al. Experimental study on energy dissipation and failure characteristics of rock at depth under non-hydrostatic pressure condition[J]. Coal Science and Technology,2023,51(10):83−96. DOI: 10.13199/j.cnki.cst.2022-1504 |
Deep buried rock is often in a non-hydrostatic initial ground stress field, and the different stress states lead to different rock response under dynamic loading. To study the dynamic behavior of rocks under coupled non-hydrostatic pressure and dynamic loading, the dynamic compression tests under different initial stress are carried out by using the split Hopkinson pressure bar (SHPB) experimental system, and the influence of different non-hydrostatic pressure on energy dissipation and failure characteristics of rock is analyzed. Based on the test results, it is found that both axial and lateral confining pressure have a significant impact on the rock dynamic strength. Taking 8 MPa as the critical point, the rock dynamic strength first increases and then decreases with the increase of axial confining pressure, but the rock dynamic strength will continue to increase with the increase of lateral confining pressure. The rock dissipative energy gradually decreases with the increase of axial confining pressure, but the trend of dissipative energy changes with confining pressure is complicated. When the axial confining pressure is low, the dissipative energy decreases with the increase of the confining pressure, and when the axial confining pressure is high, the dissipative energy shows a characteristic of increasing first and then decreasing with the increase of lateral confining pressure. According to the apparent and internal damage patterns of the specimens, combined with fractal theory and CT scanning technology, the influence of the damage pattern of rocks under different non-hydrostatic pressure conditions is analyzed. It is found that there is a significant correlation between the apparent cracks of rock and the ratio of axial-confining pressure. When the axial confining pressure ratio is low, there are fewer cracks on the side and end faces of rock. With the increase of the axial confining pressure ratio, the number of apparent cracks of rock increases. Through the analysis of the cross-sectional and vertical slices of the rock, it is found that there are circumferential and radial cracks in the rock simultaneously, and the rock failure is controlled by the penetrating shear cracks. It also can be found that the damage of rocks under non-hydrostatic pressure conditions can be divided into two parts: the central spherical rock mass and the peripheral broken rock mass, and the damage degree of rocks increases when the axial pressure increases, while the elevation of the surrounding pressure makes the damage degree of rocks decrease.
[1] |
YANG R,DING C,LI Y,et al. Crack propagation behavior in slit charge blasting under high static stress conditions[J]. International Journal of Rock Mechanics and Mining Sciences,2019,119:117−123. doi: 10.1016/j.ijrmms.2019.05.002
|
[2] |
BROWN E T,HOEK E. Trends in relationships between measured in-situ stresses and depth[J]. International Journal of Rock Mechanics & Mining Science & Geomechanics Abstracts,1978,15(4):211.
|
[3] |
ZHANG Y,YIN S,ZHANG J. In situ stress prediction in subsurface rocks: an overview and a new method[J]. Geofluids,2021,2021:1−11.
|
[4] |
赵星光,王 驹,秦向辉,等. 中国高放废物地质处置地下实验室场址深部岩体地应力测量及工程应用[J]. 中南大学学报(自然科学版),2021,52(8):2634−2645.
ZHAO X G,WANG J,QIN X H,et al. In-situ stress measurements at depth and engineering application at China's underground research laboratory site for high-level radioactive waste disposal[J]. Journal of Central South University (Science and Technology),2021,52(8):2634−2645.
|
[5] |
LI X,ZHOU Z,ZHAO F,et al. Mechanical properties of rock under coupled static-dynamic loads[J]. Journal of Rock Mechanics and Geotechnical Engineering,2009,1(1):41−47. doi: 10.3724/SP.J.1235.2009.00041
|
[6] |
王传乐,杜广印,李二兵,等. 北山深部花岗岩常规三轴压缩条件下的强度参数演化及能量耗散[J]. 岩石力学与工程学报,2021,40(11):2238−2248. doi: 10.13722/j.cnki.jrme.2021.0071
WANG C L,DU G Y,LI E B,et al. Evolution of strength parameters and energy dissipation of Beishan deep granite under conventional triaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(11):2238−2248. doi: 10.13722/j.cnki.jrme.2021.0071
|
[7] |
王明洋,李 杰,李凯锐. 深部岩体非线性力学能量作用原理与应用[J]. 岩石力学与工程学报,2015,34(4):659−667. doi: 10.13722/j.cnki.jrme.2015.04.002
WANG M Y,LI J,LI K R. A nonlinear mechanical energy theory in deep rock mass engineering and its application[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(4):659−667. doi: 10.13722/j.cnki.jrme.2015.04.002
|
[8] |
尤业超,李二兵,谭跃虎,等. 基于能量耗散原理的盐岩动力特性及破坏特征分析[J]. 岩石力学与工程学报,2017,36(4):843−851. doi: 10.13722/j.cnki.jrme.2016.0503
YOU Y C,LI E B,TAN Y H,et al. Analysis on dynamic properties and failure characteristics of salt rock based on energy dissipation principle[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(4):843−851. doi: 10.13722/j.cnki.jrme.2016.0503
|
[9] |
陈 静,江 权,冯夏庭,等. 含初始损伤大理岩的时效变形与破坏试验研究[J]. 工程科学与技术,2018,50(5):27−37.
CHEN J,JIANG Q,FENG X T,et al. Experiment Study of Time-dependent Deformation and Failure of Original Damage Marble[J]. Advanced Engineering Sciences,2018,50(5):27−37.
|
[10] |
左建平,陈 岩,宋洪强. 深部煤岩组合体破坏行为与非线性模型研究进展[J]. 中南大学学报(自然科学版),2021,52(8):2510−2521.
ZUO J P,CHEN Y,SONG H Q. Study progress of failure behaviors and nonlinear model of deep coal-rockcombined body[J]. Journal of Central South University (Science and Technology),2021,52(8):2510−2521.
|
[11] |
LIU K, ZHAO J, WU G, et al. Dynamic strength and failure modes of sandstone under biaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 128.
|
[12] |
夏开文,王 帅,徐 颖,等. 深部岩石动力学实验研究进展[J]. 岩石力学与工程学报,2021,40(3):448−475. doi: 10.13722/j.cnki.jrme.2020.0343
XIA K W,WANG S,XU Y,et al. Research progress in deep rock dynamics experiments[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(3):448−475. doi: 10.13722/j.cnki.jrme.2020.0343
|
[13] |
LIU P,ZHOU X,QIAN Q. Experimental investigation of rigid confinement effects of radial strain on dynamic mechanical properties and failure modes of concrete[J]. International Journal of Mining Science and Technology,2021,31(5):939−951. doi: 10.1016/j.ijmst.2021.06.001
|
[14] |
杨国梁,毕京九,张志飞,等. 被动围压下层理角度对页岩动态强度及耗能的影响[J]. 矿业科学学报,2021,6(2):188−195. doi: 10.19606/j.cnki.jmst.2021.02.006
YANG G L,BI J J,ZHANG Z F,et al. Study on the influence of the bedding angle under passive confining pressure on the dynamic strength and energy consumption of shale[J]. Journal of Mining Science and Technology,2021,6(2):188−195. doi: 10.19606/j.cnki.jmst.2021.02.006
|
[15] |
李成武,王金贵,解北京,等. 煤岩材料SHPB实验被动围压数值模拟研究[J]. 采矿与安全工程学报,2014,31(6):957−962.
LI C W,WANG J G,XIE B J,et al. Numerical analysis of split Hopkinson pressure bar test with passive confined pressure for coal[J]. Journal of Mining & Safety Engineering,2014,31(6):957−962.
|
[16] |
GONG F,SI X,LI X,et al. Dynamic triaxial compression tests on sandstone at high strain rates and low confining pressures with split Hopkinson pressure bar[J]. International Journal of Rock Mechanics and Mining Sciences,2019,113:211−219. doi: 10.1016/j.ijrmms.2018.12.005
|
[17] |
DU H,DAI F,WEI M,et al. Dynamic Compression–Shear Response and Failure Criterion of Rocks with Hydrostatic Confining Pressure: An Experimental Investigation[J]. Rock Mechanics and Rock Engineering,2021,54(2-3):1−17.
|
[18] |
WU B,YAO W,XIA K. An Experimental Study of Dynamic Tensile Failure of Rocks Subjected to Hydrostatic Confinement[J]. Rock Mechanics & Rock Engineering,2016,49(10):1−10.
|
[19] |
徐松林,王鹏飞,单俊芳,等. 真三轴静载作用下混凝土的动态力学性能研究[J]. 振动与冲击,2018,37(15):59−67.
XU S L,WANG P F,SHAN J F,et al. Dynamic behavior of concrete under static tri-axial loadings[J]. Journal of Vibration and Shock,2018,37(15):59−67.
|
[20] |
LIU K,ZHANG Q,WU G,et al. Dynamic Mechanical and Fracture Behavior of Sandstone Under Multiaxial Loads Using a Triaxial Hopkinson Bar[J]. Rock Mechanics and Rock Engineering,2019,52:2175−2195. doi: 10.1007/s00603-018-1691-y
|
[21] |
谢和平,彭瑞东,鞠 杨. 岩石变形破坏过程中的能量耗散分析[J]. 岩石力学与工程学报,2004,23(21):3565−3570. doi: 10.3321/j.issn:1000-6915.2004.21.001
XIE H P,PENG R D,JU Y. Energy dissipation of rock deformation and fracture[J]. Chinese Journal of Rock Mechanics and Engineering,2004,23(21):3565−3570. doi: 10.3321/j.issn:1000-6915.2004.21.001
|
[22] |
王 文,李化敏,顾合龙,等. 动静组合加载含水煤样能量耗散特征分析[J]. 岩石力学与工程学报,2015,34(S2):3965−3971. doi: 10.13722/j.cnki.jrme.2015.0546
WANG W,LI H M,GU H L,et al. Feature analysis of energy dissipation of water-saturated coal samples under coupled static-dynamic loads[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(S2):3965−3971. doi: 10.13722/j.cnki.jrme.2015.0546
|
[23] |
刘少虹,毛德兵,齐庆新,等. 动静加载下组合煤岩的应力波传播机制与能量耗散[J]. 煤炭学报,2014,39(S1):15−22. doi: 10.13225/j.cnki.jccs.2013.0411
LIU S H,MAO D B,QI Q X,et al. Under static loading stress wave propagation mechanism and energy dissipation in compound coal-rock[J]. Journal of China Coal Society,2014,39(S1):15−22. doi: 10.13225/j.cnki.jccs.2013.0411
|
[24] |
马少森,陈卫忠,赵武胜. 三维动静组合加载下花岗岩能量耗散试验研究[J]. 山东大学学报:工学版,2019,49(3):95−102.
MA S S,CHEN W Z,ZHAO W S. Experimental study on energy dissipation of granite subjected to three-dimensional coupled static and dynamic loading[J]. Journal of Shandong University (Engineering Science),2019,49(3):95−102.
|
[25] |
周宗红,章雅琦,杨安国,等. 白云岩三维动静组合加载力学特性试验研究[J]. 煤炭学报,2015,40(5):1030−1036. doi: 10.13225/j.cnki.jccs.2014.0944
ZHOU Z H,ZHANG Y Q,YANG A G,et al. Experimental study on mechanical characteristics of dolomite under three-dimensional coupled static-dynamic loading[J]. Journal of China Coal Society,2015,40(5):1030−1036. doi: 10.13225/j.cnki.jccs.2014.0944
|
[26] |
赵光明,马文伟,孟祥瑞. 动载作用下岩石类材料破坏模式及能量特性[J]. 岩土力学,2015,36(12):3598−3605,3624. doi: 10.16285/j.rsm.2015.12.033
ZHAO G M,MA W W,MENG X R. Damage modes and energy characteristics of rock-like materials under dynamic load[J]. Rock and Soil Mechanics,2015,36(12):3598−3605,3624. doi: 10.16285/j.rsm.2015.12.033
|
[27] |
王 伟,梁渲钰,张明涛,等. 动静组合加载下砂岩破坏机制及裂纹密度试验研究[J]. 岩土力学,2021,42(10):2647−2658. doi: 10.16285/j.rsm.2021.0095
WANG W,LIANG X Y,ZHANG M T,et al. Experimental study on sandstone failure mechanism and crack density under combined dynamic and static loading[J]. Rock and Soil Mechanics,2021,42(10):2647−2658. doi: 10.16285/j.rsm.2021.0095
|
[28] |
杜超超,温 森,孔庆梅. 一维动静组合加载下复合岩样动态力学特性试验研究[J]. 振动与冲击,2021,40(21):168−178,206.
DU C C,WEN S,KONG Q M. Tests for dynamic mechanical properties of composite rock samples under 1-D dynamic-static combined loading[J]. Journal of Vibration and Shock,2021,40(21):168−178,206.
|
[29] |
宋常胜,王 文,刘 凯,等. 真三轴动静组合加载饱水煤样能量耗散特征[J]. 煤炭学报,2022,47(5):2011−2026.
SONG C S,WANG W,LIU K,et al. Energy dissipation of saturated coal specimen by using a true triaxial Hopkinson bar system[J]. Journal of China Coal Society,2022,47(5):2011−2026.
|
[30] |
刘志义,甘德清,于泽皞,等. 一维动静组合加载下磁铁矿石力学特性及破碎特征试验研究[J]. 岩石力学与工程学报,2022,41(S1):2869−2880.
LIU Z Y,GAN D Q,YU Z H,et al. Experimental research on the dynamic mechanical properties and breakage behavior of magnetite under one-dimensional coupled dynamic and static loads[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(S1):2869−2880.
|
[31] |
ZHOU Y,XIA K,LI X,et al. Suggested methods for determining the dynamic strength parameters and mode-I fracture toughness of rock materials[J]. International Journal of Rock Mechanics and Mining Sciences,2012,49:105−112. doi: 10.1016/j.ijrmms.2011.10.004
|
[32] |
王礼立. 应力波基础(2版) [M]. 北京: 国防工业出版社, 2005.
WANG L L. Fundamentals of Stress Waves (2nd edition)[M]. Beijing: National Defense Industry Press, 2005.
|
[33] |
CHEN W,LU F,FREW D J,et al. Dynamic compression testing of soft materials[J]. Journal of Applied Mechanics,2002,69(3):214−223. doi: 10.1115/1.1464871
|
[34] |
FREW D J,FORRESTAL M J,CHEN W. Pulse shaping techniques for testing brittle materials with a split Hopkinson pressure bar[J]. Experimental Mechanics,2002,42(1):93−106.
|
[35] |
李夕兵,宫凤强,ZHAO J,等. 一维动静组合加载下岩石冲击破坏试验研究[J]. 岩石力学与工程学报,2010,29(2):251−260.
LI X B,GONG F Q,ZHAO J,et al. Test study of impact failure of rock subjected to onedimensional coupled static and dynamic loads[J]. Chinese Journal of Rock Mechanics and Engineering,2010,29(2):251−260.
|
[36] |
金解放,杨 益,廖占象,等. 动荷载与地应力对岩石响应特性的影响试验研究[J]. 岩石力学与工程学报,2021,40(10):1990−2002.
JIN J F,YANG Y,LIAO Z X,et al. Effect of dynamic loads and geo-stresses on response characteristics of rocks[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(10):1990−2002.
|
[37] |
谢和平,彭瑞东,鞠 杨,等. 岩石破坏的能量分析初探[J]. 岩石力学与工程学报,2005,24(15):2603−2608.
XIE H P,PENG R D,JU Y,et al. On energy analysis of rock failure[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(15):2603−2608.
|
[38] |
LUNDBERG B. A split Hopkinson bar study of energy absorption in dynamic rock fragmentation[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1976,13(6):187−197.
|
[39] |
王 春,程露萍,唐礼忠,等. 高轴压和围压共同作用下受频繁冲击时含铜蛇纹岩能量演化规律[J]. 爆炸与冲击,2019,39(5):55−68.
WANG C,CHENG L P,TANG L Z,et al. Energy evolution law of copper-bearing serpentine received frequent impact under common action of high axial compression and confining pressure[J]. Explosion and Shock Wave,2019,39(5):55−68.
|
[40] |
谢和平,鞠 杨. 分数维空间中的损伤力学研究初探[J]. 力学学报,1999(3):45−55.
XIE H P,JU Y. A study of damage mechanics theory in fractional dimensional space[J]. Chinese Journal of Theoretical and Applied Mechanics,1999(3):45−55.
|
[41] |
赵洪宝,王 涛,苏泊伊,等. 局部荷载下煤样内部微结构及表面裂隙演化规律[J]. 中国矿业大学学报,2020,49(2):227−237. doi: 10.13247/j.cnki.jcumt.001122
ZHAO H B,WANG T,SU B Y,et al. Evolution law of internal microstructures and surface cracks of coal under local loading[J]. Journal of China University of Mining and Technology,2020,49(2):227−237. doi: 10.13247/j.cnki.jcumt.001122
|
[42] |
ZUO J,YANG R,MA X,et al. Explosion wave and explosion fracture characteristics of cylindrical charges[J]. International Journal of Rock Mechanics and Mining Sciences,2020,135(5):104501.
|
[43] |
赵光明,周 俊,孟祥瑞,等. 高径比差异条件下花岗岩岩石动态冲击压缩特性[J]. 岩石力学与工程学报,2021,40(7):1392−1401. doi: 10.13722/j.cnki.jrme.2020.1163
ZHAO G M,ZHOU J,MENG X R,et al. Dynamic impact compression characteristics of granite rocks with different length-diameter ratios[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(7):1392−1401. doi: 10.13722/j.cnki.jrme.2020.1163
|
[44] |
金解放,吴 越,张 睿,等. 冲击速度和轴向静载对红砂岩破碎及能耗的影响[J]. 爆炸与冲击,2020,40(10):42−45.
JIN J F,WU Y,ZHANG R,et al. Effect of impact velocity and axial static stress on fragmentation and energy dissipation of red sandstone[J]. Explosion And Shock Waves,2020,40(10):42−45.
|
[45] |
吕晓聪,许金余,葛洪海,等. 围压对砂岩动态冲击力学性能的影响[J]. 岩石力学与工程学报,2010,29(1):193−201.
LU X C,XU J Y,GE H H,et al. Effects of confining pressure on mechanical behaviors of sandstone under dynamic impact loads[J]. Chinese Journal of Rock Mechanics and Engineering,2010,29(1):193−201.
|