Advance Search
WU Yongping,YAN Zhuangzhuang,LUO Shenghu,et al. Dip effect of stress transfer and structural instability mechanism of coal-rock combination[J]. Coal Science and Technology,2023,51(1):105−116. DOI: 10.13199/j.cnki.cst.2022-1492
Citation: WU Yongping,YAN Zhuangzhuang,LUO Shenghu,et al. Dip effect of stress transfer and structural instability mechanism of coal-rock combination[J]. Coal Science and Technology,2023,51(1):105−116. DOI: 10.13199/j.cnki.cst.2022-1492

Dip effect of stress transfer and structural instability mechanism of coal-rock combination

Funds: 

National Natural Science Foundation of China (52274139,51974227,51634007)

More Information
  • Received Date: September 14, 2022
  • Available Online: March 08, 2023
  • The key to safe and efficient mining of steeply dipping coal seams is an effective control of surrounding rock. Revealing the dip effect on mining mechanical behavior of coal-rock combination are the basis for the multi-scale surrounding rock collaborative control in steeply dipping coal seams. According to mechanical characteristics of coal-rock combination such as stress transfer between layers, principal stress deflection and non-equilibrium deformation and failure at different inclination angles, the dip effect of principal stress distribution and deformation and failure law in coal-rock combination is analyzed by research methods of rock mechanics experiment, numerical simulation and theoretical analysis combined with feedback.The results show that: when the angle changes in the range of 0°–60°, the evolution characteristics of the size and direction of the principal stress of the coal-rock combination at the interface are divided into two categories; When the dip angle is less than the critical angle α0, the first principal stress decreases with the increase of the dip angle, the third principal stress exhibits a monotonic evolution trend of “coal decrease + rock increase”, and the principal stress direction is a deflection state of “coal clockwise + rock counterclockwise”. When the angle is larger than the critical angle α0, the first principal stress of the coal-rock combination increases with the increase of the angle, the variation of the third principal stress increases, and the principal stress direction is in the deflection state of “coal counterclockwise + rock clockwise”. When the coal-rock combination is affected by the dip angle, the mechanical characteristics of the two states are different, so that the combined failure mode of coal-rock combination changes from “the rock mass on the upper side of the interface + non-interface part of the coal body” to “the lower side of the interface + non-interface part of the coal body”. That is, corresponding to the transformation of the shear deformation failure law of the composite body to the slip failure law at the interface. Therefore, the strength of coal-rock combi-nation decreases with the increase of dip angle. The research results reveal the non-equilibrium transfer law of stress in coal-rock combination and the dip effect of its failure mechanism, which has certain theoretical reference significance for the safe and efficient mining of steeply dipping coal seams.

  • [1]
    鲜学福, 谭学术. 层状岩体破坏机理[M]. 重庆: 重庆大学出版社, 1989.

    XIAN Xuefu, TAN Xueshu. Failure mechanisms of layered rock masses[M]. Chongqing: Chongqing University Press, 1989.
    [2]
    伍永平,贠东风,解盘石,等. 大倾角煤层长壁综采: 进展、实践、科学问题[J]. 煤炭学报,2020,45(1):24−34.

    WU Yongping,YUN Dongfeng,XIE Panshi,et al. Progress, practice and scientific issues in steeply dipping coal seams fully-mechanized mining[J]. Journal of China Coal Society,2020,45(1):24−34.
    [3]
    罗生虎,田程阳,伍永平,等. 大倾角煤层长壁开采顶板受载与变形破坏倾角效应[J]. 中国矿业大学学报,2021,50(6):1041−1050. doi: 10.3969/j.issn.1000-1964.2021.6.zgkydxxb202106003

    LUO Shenghu,TIAN Chengyang,WU Yongping,et al. Obliquity effect of asymmetric deformation and failure of roof in longwall mining of steeply inclined seam[J]. Journal of China University of Mining and Technology,2021,50(6):1041−1050. doi: 10.3969/j.issn.1000-1964.2021.6.zgkydxxb202106003
    [4]
    梅松华. 层状岩体开挖变形机制及破坏机理研究[D]. 武汉: 中国科学院武汉岩土力学研究所, 2008.

    MEI Songhua. Study on deformation mechanism and failure characteristics of layered rock masses due to excavation[D]. Wuhan: Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, 2008.
    [5]
    张泽天,刘建锋,王 璐,等. 组合方式对煤岩组合体力学特性和破坏特征影响的试验研究[J]. 煤炭学报,2012,37(10):1677−1681. doi: 10.13225/j.cnki.jccs.2012.10.021

    ZHANG Zetian,LIU Jianfeng,WANG Lu,et al. Effects of combination mode on mechanical properties and failure characteristics of the coal-rock combinations[J]. Journal of China Coal Society,2012,37(10):1677−1681. doi: 10.13225/j.cnki.jccs.2012.10.021
    [6]
    郭东明, 左建平, 张 毅, 等. 不同倾角组合煤岩组合体的强度与破坏机制研究[J]. 岩土力学, 2011, 32(5): 1333–1339.

    GUO Dongming, ZUO Jianping, ZHANG Yi, et al. Research on strength and failure mechanism of deep coal-rock combination bodies of different inclined angles[J]. Rock and Soil Mechanics, 2011, 32(5): 1333–1339.
    [7]
    杨 科,刘文杰,窦礼同,等. 煤岩组合体界面效应与渐进失稳特征试验[J]. 煤炭学报,2020,45(5):1691−1700. doi: 10.13225/j.cnki.jccs.DY20.0294

    YANG Ke,LIU Wenjie,DOU Litong,et al. Experiment on interface effect and progressive instability characteristics of coal-rock assembly[J]. Journal of China Coal Society,2020,45(5):1691−1700. doi: 10.13225/j.cnki.jccs.DY20.0294
    [8]
    CHEN Y, ZUO J, LIU D, et al. Deformation failure characteristics of coal-rock combined body under uniaxial compressio: experimental and numerical investigations[J]. Bulletin of Engineering Geology and the Environment, 2019, 78(5): 3449–3464.
    [9]
    窦林名,田京城,陆菜平,等. 组合煤岩冲击破坏电磁辐射规律研究[J]. 岩石力学与工程学报,2005,24(19):3541−3544. doi: 10.3321/j.issn:1000-6915.2005.19.023

    DOU Linming,TIAN Jingcheng,LU Caiping,et al. Research on electromagnetic radiation rules of composed coal-rock burst failure[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(19):3541−3544. doi: 10.3321/j.issn:1000-6915.2005.19.023
    [10]
    左建平,陈 岩,张俊文,等. 不同围压作用下煤–岩组合体破坏行为及强度特征[J]. 煤炭学报,2016,41(11):2706−2713.

    ZUO Jianping,CHEN Yan,ZHANG Junwen,et al. Failure behavior and strength characteristics of coal-rock combined body under different confining pressures[J]. Journal of China Coal Society,2016,41(11):2706−2713.
    [11]
    解北京,严 正. 基于层叠模型组合煤岩组合体动态力学本构模型[J]. 煤炭学报,2019,44(2):463−472.

    XIE Beijing,YAN Zheng. Dynamic mechanical constitutive model of combined coal-rock mass based on overlay model[J]. Journal of China Coal Society,2019,44(2):463−472.
    [12]
    李成杰,徐 颖,张宇婷,等. 冲击荷载下裂隙类煤岩组合体能量演化与分形特征研究[J]. 岩石力学与工程学报,2019,38(11):2231−2241. doi: 10.13722/j.cnki.jrme.2019.0446

    LI Chengjie,XU Ying,ZHANG Yuting,et al. Study on energy evolution and fractal characteristics of cracked coal-rock-like combined body under impact loading[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(11):2231−2241. doi: 10.13722/j.cnki.jrme.2019.0446
    [13]
    宋录生,赵善坤,刘 军,等. “顶板–煤层”结构体冲击倾向性演化规律及力学特性试验研究[J]. 煤炭学报,2014,39(S1):23−30.

    SONG Lusheng,ZHAO Shankun,LIU Jun,et al. Experimental research on rules of rock burst tendency evolution and mechanical properties of “roof-coal” structure body[J]. Journal of China Coal Society,2014,39(S1):23−30.
    [14]
    杨 磊,高富强,王晓卿,等. 煤岩组合体的能量演化规律与破坏机制[J]. 煤炭学报,2019,44(12):3894−3902.

    YANG Lei,GAO Fuqiang,WANG Xiaoqing,et al. Energy evolution law and failure mechanism of coal-rock combined specimen[J]. Journal of China Coal Society,2019,44(12):3894−3902.
    [15]
    王学滨. 煤岩两体模型变形破坏数值模拟[J]. 岩土力学,2006,27(7):1066−1070. doi: 10.3969/j.issn.1000-7598.2006.07.009

    WANG Xuebin. Numerical simulation of deformation and failure for two bodies model composed of rock and coal[J]. Rock and Soil Mechanics,2006,27(7):1066−1070. doi: 10.3969/j.issn.1000-7598.2006.07.009
    [16]
    郭伟耀,周 恒,徐宁辉,等. 煤岩组合体力学特性模拟研究[J]. 煤矿安全,2016,47(2):33−35,39. doi: 10.13347/j.cnki.mkaq.2016.02.009

    GUO Weiyao,ZHOU Heng,XU Ninghui,et al. Simulation study of mechanical properties of coal rock combination[J]. Safety in Coal Mines,2016,47(2):33−35,39. doi: 10.13347/j.cnki.mkaq.2016.02.009
    [17]
    曹吉胜,戴前伟,周 岩,等. 考虑界面倾角及分形特性的组合煤岩组合体强度及破坏机制分析[J]. 中南大学学报(自然科学版),2018,49(1):175−182.

    CAO Jisheng,DAI Qianwei,ZHOU Yan,et al. Failure mechanism and strength of coal-rock combination bodies considering dip angles and fractal characteristics of interface[J]. Journal of Central South University:Science and Technology,2018,49(1):175−182.
    [18]
    付 斌,周宗红,王友新,等. 不同煤岩组合体力学特性的数值模拟研究[J]. 南京理工大学学报,2016,40(4):485−492. doi: 10.14177/j.cnki.32-1397n.2016.40.04.018

    FU Bin,ZHOU Zonghong,WANG Youxin,et al. Numerical simulation of different combination of coal and rock sample mechanics and acoustic emission characteristics[J]. Journal of Nanjing University of Science and Technology,2016,40(4):485−492. doi: 10.14177/j.cnki.32-1397n.2016.40.04.018
    [19]
    郑颖人, 孔 亮. 岩土塑性力学[M]. 北京: 中国建筑工业出版社, 2010.

    ZHENG Yingren, KONG Liang. Geotechnical plastic mechanics[M]. Beijing: China Architecture and Building Press, 2010.
    [20]
    左保成,陈从新,刘才华. 相似材料试验研究[J]. 岩土力学,2004,25(11):1805−1808. doi: 10.3969/j.issn.1000-7598.2004.11.027

    ZUO Baocheng,CHEN Congxin,LIU Caihua. Research on similar material experiment[J]. Rock and Soil Mechanics,2004,25(11):1805−1808. doi: 10.3969/j.issn.1000-7598.2004.11.027
    [21]
    黄彦华,杨圣奇,刘相如. 类岩石材料力学特性的试验及数值模拟研究[J]. 实验力学,2014,29(2):239−249. doi: 10.7520/1001-4888-13-105

    HUANG Yanhua,YANG Shengqi,LIU Xiangru. Experimental and numerical study on the mechanical characteristics of rock-like materials[J]. Journal of Experimental Mechanics,2014,29(2):239−249. doi: 10.7520/1001-4888-13-105
    [22]
    殷鹏飞. 层状复合岩石试样力学特性单轴压缩试验与颗粒流模拟研究[D]. 徐州: 中国矿业大学, 2016.

    YIN Pengfei. Experiment and particle flow simulation on mechanical properties of layered composite rock under uniaxial compression [D]. Xuzhou: University of Mining and Technology, 2016.
    [23]
    徐芝纶. 弹性力学[M]. 北京: 高等教育出版社, 2016.

    XU Zhilun. Elastic mechanics[M]. Beijing: Higher Education Press, 2016.
  • Cited by

    Periodical cited type(19)

    1. 朱开鹏. 急倾斜煤层长壁采场底板应力传递路径倾角效应研究. 煤炭工程. 2025(05)
    2. 邱华富,李宇航,刘浪,梁超,丁自伟. 单轴压缩下充填体-围岩组合体力学特性与能量演化规律. 中南大学学报(自然科学版). 2025(02): 688-701 .
    3. 左建平,徐丞谊,展帅菲,马宗宇,于祥,孙运江. 煤岩组合体真三轴破坏行为及结构-材料协同破坏机制. 中国矿业大学学报. 2025(02): 287-303 .
    4. 刘志伟,刘志祥,马泗洲,袁丛祥,郭灿,张双侠. 含倾角岩充组合体动态力学破坏特性数值模拟研究. 中南大学学报(自然科学版). 2025(04): 1440-1453 .
    5. 杨科,张寨男,华心祝,吕鑫. 倾角与含水作用下人工坝-煤组合体强度模型及失稳机制分析. 采矿与安全工程学报. 2025(03): 625-635 .
    6. 赵阳,唐铁吾. 不同倾角煤岩组合体冲击破坏特征研究. 煤炭技术. 2024(02): 34-38 .
    7. 梁良,李奥博,李杨杨,姜绪甲,师建斌,王新蓉,关韬,王刚. 单轴压缩状态下煤岩组合结构破坏失稳的力学特性研究. 现代矿业. 2024(02): 143-147 .
    8. 王红伟,焦建强,伍永平,蒋宝林,罗生虎,王同. 急倾斜短壁综放采场围岩采动应力演化规律. 采矿与安全工程学报. 2024(03): 462-471 .
    9. 冉启灿,梁运培,邹全乐,张碧川. 倾斜煤层群覆岩“三场”非对称特征及靶向抽采机制. 煤炭科学技术. 2024(04): 177-192 . 本站查看
    10. 卢守青,刘永富,孙建中,贝太彪,秦玉金,张荣,宋权浩,张永亮,撒占友,刘杰. 初始应力状态及路径对含瓦斯软硬组合煤体失稳的影响. 中国矿业大学学报. 2024(04): 751-762 .
    11. 李春元. 深部原生煤岩组合体三轴压缩破裂特征与失稳模式. 煤田地质与勘探. 2024(08): 111-123 .
    12. 陈光波,唐薇,李谭,王创业,王二雨,张国华. 裂隙煤岩组合体单轴压缩力学响应及失稳机制. 岩土力学. 2024(09): 2633-2652 .
    13. 马士亮,刘钢,刘学斌. 加载速率对岩-煤-岩组合体力学和破坏特征的影响. 山东煤炭科技. 2024(09): 128-132 .
    14. 姜玥,邹文栋. 基于PFC~(3D)的空心圆柱灰砂岩宏细观参数相关性研究. 煤炭科学技术. 2024(10): 78-89 . 本站查看
    15. 冯国瑞,王晶,杜献杰,刘文昊. 界面倾角对岩充组合体协同承载特征的影响机理. 中国矿业大学学报. 2024(06): 1053-1062 .
    16. 黄子康,李准,王继超,马世纪,杨雨默. 不同煤体高度煤岩组合体的蠕变扰动特性及强度极限邻域研究. 煤矿安全. 2024(12): 39-47 .
    17. 陈光波,王创业,田志超,李谭,王二雨,高宁,徐泽瑞,张国华,陈伟,尚建学. 煤岩组合体动力破坏响应研究进展述评. 金属矿山. 2024(12): 10-25 .
    18. 解盘石,杨航,伍永平,黄宝发,林伟典,易磊磊. 基于数字孪生的倾斜采场装备力学行为测控研究. 煤炭科学技术. 2024(12): 259-271 . 本站查看
    19. 李硕森,徐青云,吴季洪. 膏体充填开采覆岩移动特征研究. 山西煤炭. 2023(04): 7-13 .

    Other cited types(5)

Catalog

    Article views (246) PDF downloads (328) Cited by(24)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return