Advance Search

HE Shumin,PENG Wanwang,WANG Xueyun. Simulation of methanol synthesis process with annual output of 1 million tons and investigation of influencing factors[J]. Coal Science and Technology,2023,51(S1):477−483

. DOI: 10.13199/j.cnki.cst.2022-1441
Citation:

HE Shumin,PENG Wanwang,WANG Xueyun. Simulation of methanol synthesis process with annual output of 1 million tons and investigation of influencing factors[J]. Coal Science and Technology,2023,51(S1):477−483

. DOI: 10.13199/j.cnki.cst.2022-1441

Simulation of methanol synthesis process with annual output of 1 million tons and investigation of influencing factors

Funds: 

Science and Technology Innovation Venture Capital Project of CCTEG (2020-2-GJHZ005)

More Information
  • Received Date: September 05, 2022
  • Available Online: August 08, 2023
  • Methanol is one of the important basic chemical raw materials. In order to realize the efficient utilization of synthesis gas to methanol, the process simulation software Aspen Plus is used to establish a methanol model with an annual output of 1 million tons. Firstly, under certain hypothetical conditions, Aspen Plus is used to establish a methanol synthesis reactor model based on an equilibrium reactor. The synthesis gas is the gas produced by the pressurized pulverized gasifier. The simulation results of a domestic methanol plant with an annual output of 1 million tons show that the simulation results are basically consistent with the actual operation data. The absolute deviation between the design value composed of feed gas and purge gas and the actual simulation value is within ± 2%, the precision of industrial simulation is achieved. On the basis of this model, the influence of recycle ratio of syngas from BGL gasifier and syngas produced by solid slag discharge pulverized coal pressurized gasifier on methanol yield during methanol synthesis were explored. The results show that the H / C ratio of feed gas is 2.05, and the effective gas consumption ton of methanol synthesis feed gas produced by BGL gasification, solid slag removal and crushed coal pressurized gasification is2247Nm3 and2461Nm3 respectively. With the increase of methane content in the two feed gases, the conversion of H2, CO and CO2 in the feed gas decreases, and the methanol yield decreases. Under the same operating conditions, as the circulation ratio increases from 1.5 to 5.0, the methanol output shows a parabola rising trend. Only when the circulation ratio of BGL gasification feed gas and solid slag removal crushed coal pressurized feed gas in methanol synthesis is not lower than 2.00 and 4.93 respectively, the annual methanol output can reach 1 million tons. The compressor power consumption shows a linear rising trend with the increase of the circulation ratio.

  • [1]
    顾宗勤,苏建英. 氮肥甲醇产业应勇担减碳重任[J]. 中国石油和化工产业观察,2021(8):30−31.

    GU Zongqin,SU Jianying. Nitrogen fertilizer and methanol industry should shoulder the heavy responsibility of carbon reduction[J]. China Petrochemical Industry Observer,2021(8):30−31.
    [2]
    马宏方, 张海涛, 应卫勇, 等. 焦炉气与煤气生产甲醇的研究[J]. 天然气化工, 2010, 35(1): 13−16.

    MA Hongfang, ZHANG Haitao, YING Weiyong, et al. Methanol synthesis from coke-oven gas and coal gas [J] Natural Gas Chemical Industry, 2010, 35(1): 13−16
    [3]
    邓刚荣. Lurgi甲醇合成塔与Davy甲醇合成塔的比较[J]. 化工设计通讯,2014,40(4):67−69.

    DENG Gangrong. Compare Lurgi methanol synthesis reactor with Davy methanol synthesis reactor[J]. Chemical Engineering Design Communication,2014,40(4):67−69.
    [4]
    汪寿建. 大型甲醇合成工艺及甲醇下游产业链综述[J]. 煤化工,2016,44(5):23−28.

    WANG Shoujian. Overview of mega-methanol synthesis process and downstream industrial chain of methanol[J]. Coal Chemical Industry,2016,44(5):23−28.
    [5]
    冯再南, 姚泽龙, 楼 韧, 等. 百万吨级大型甲醇合成塔技术发展探讨煤化工[J]. 煤炭加工与综合利用, 2015, 193(10): 54−57.

    FENG Zainan, YAO Zelong, LOU Ren, et al. Discussion on technology development of large-scale methanol synthesis tower of one million tons [J] Coal Processing & Comprehensive Utilization, 2015, 193(10): 54−57
    [6]
    杨振江. 大型甲醇装置Lurgi与Davy合成技术对比[J]. 中氮肥, 2017, (3): 1−3.

    YANG Zhenjiang. Comparison of Lurgi and Davy synthesis technologies in large methanol plants [J] M-Sized Nitrogenous Fertilizer Progress, 2017, (3): 1−3.
    [7]
    王焕煜,王仁远,许振良. 硫茚萃取精馏分离的模拟计算[J]. 化学世界,2007,48(3):148−151. doi: 10.3969/j.issn.0367-6358.2007.03.006

    WANG Huanyu,WANG Renyuan,XU Zhenliang. Simulation on separation of benzothiophene by extractive distillation[J]. Chemical World,2007,48(3):148−151. doi: 10.3969/j.issn.0367-6358.2007.03.006
    [8]
    周 密,唐黎华,刘敬荣. Aspen Plus模拟计算甲醇合成的平衡组成[J]. 煤化工,2008,36(6):30−33.

    ZHOU Mi,TANG Lihua,LIU Jingrong. Simulation of methanol synthesis equilibrium composition with Aspen Plus[J]. Coal Chemical Industry,2008,36(6):30−33.
    [9]
    朱颖颖,王树荣,葛晓岚,等. 生物质基合成气合成甲醇的热力学模拟研究[J]. 浙江大学学报(工学版),2011,45(2):341−347.

    ZHU Yingying,WANG Shurong,GE Xiaolan,et al. Thermodynamic simulation of methanol synthesis from biomass-derived syngas[J]. Journal of Zhejiang University (Engineering Science),2011,45(2):341−347.
    [10]
    马 宁. 基于Aspen Plus的甲醇合成过程模拟[J]. 煤化工与甲醇,2020,46(10):5−6.

    MA Ning. Simulation of methanol synthesis process based on Aspen Plus[J]. Coal Chemical Methanol,2020,46(10):5−6.
    [11]
    陈世豪,曹志凯,师 佳,等. 基于 ASPEN PLUS 的加压固定床煤气化稳态模拟方法研究[J]. 煤炭学报,2012,37(S1):167−172.

    CHEN Shihao,CAO Zhikai,SHI Jia,et al. Steady-state simulation of fixed bed for coal gasification using ASPEN PLUS[J]. Journal of China Coal Society,2012,37(S1):167−172.
    [12]
    张秋利, 罗 敏, 李凤英. 甲醇合成反应过程的模拟与优化[J]. 天然气化工(C1化学与化工), 2019, 44(1): 95−100.

    ZHANG Qiuli, LUO Min, LI Fengying. Simulation and optimization of methanol synthesis process [J] Natural Gas Chemical Industry, 2019, 44(1): 95−100
    [13]
    谭 伟,宋维仁,叶银梅等. 基于Aspen Plus用户模型的甲醇合成模拟及分析[J]. 洁净煤技术,2012,18(1):58−62.

    TAN Wei,SONG Weiren,YE Yinmei,et al. Process simulation and analysis of methanol synthesis based on Aspen Plus user model[J]. Clean Coal Technology,2012,18(1):58−62.
    [14]
    BISSETT L. Equilibrium constants for shift reactions[J]. Chemical Engineering,1977,84(23):555−556.
    [15]
    李俊龙,王丹丹,郭绪强,等. 甲醇合成工艺驰放气位置优化研究[J]. 石油化工高等学校学报,2015,28(4):7−12. doi: 10.3969/j.issn.1006-396X.2015.04.002

    LI Junlong,WANG Dandan,GUO Xuqiang,et al. Simulation optimization of exhausted position in methanol synthesis process[J]. Journal of Petrochemical Universities,2015,28(4):7−12. doi: 10.3969/j.issn.1006-396X.2015.04.002
    [16]
    PENG D Y,ROBINSON D B. A new two-constant-question of state[J]. Industrial and Engineering Chemistry Fundamentals,1976,15(1):59−64. doi: 10.1021/i160057a011
    [17]
    刁 杰,王金福,王志良,等. 甲醇合成反应热力学分析及实验研究[J]. 化学反应工程与工艺,2001,17(1):10−15. doi: 10.3969/j.issn.1001-7631.2001.01.003

    DIAO Jie,WANG Jinfu,WANG Zhiliang,et al. Theoretical analysis and experimental study of methanol synthesis[J]. Chemical Reaction Engineering and Technology,2001,17(1):10−15. doi: 10.3969/j.issn.1001-7631.2001.01.003
    [18]
    贺树民,匡建平,姚 敏,等. 大型干煤粉气流床气化技术国内应用与展望[J]. 当代化工,2019,48(4):845−850. doi: 10.13840/j.cnki.cn21-1457/tq.2019.04.046

    HE Shumin,KUANG Jianping,YAO Min,et al. Domestic application and prospect of large-scale dry pulverized coal gasification technology[J]. Contemporary Chemical Industry,2019,48(4):845−850. doi: 10.13840/j.cnki.cn21-1457/tq.2019.04.046
    [19]
    茹杨伟,孙振江,李 红. NC310型甲醇合成催化剂在1 800 kt/a甲醇装置上的应用[J]. 能源化工,2022,43(2):29−33. doi: 10.3969/j.issn.1006-7906.2022.02.006

    RU Yangwei,SUN Zhenjiang,LI Hong. Application of NC310 methanol synthesis catalyst in 1 800 kt/a methanol plant[J]. Energy Chemical Industry,2022,43(2):29−33. doi: 10.3969/j.issn.1006-7906.2022.02.006
    [20]
    郭建民. 固态排渣碎煤加压气化装置的优化运行与改进[J]. 煤化工,2017,45(6):12−15. doi: 10.3969/j.issn.1005-9598.2017.06.004

    GUO Jianmin. Optimal operation and improvement of crushed coal pressurized gasification unit with dry ash extraction[J]. Coal Chemical Industry,2017,45(6):12−15. doi: 10.3969/j.issn.1005-9598.2017.06.004
    [21]
    宋文健,崔书明,韩雪冬,等. BGL 煤气化技术分析与中煤图克煤制化肥气化炉运行总结[J]. 煤炭加工与综合利用,2015(6):45−49,68.

    SONG Wenjian,CUI Shuming,HAN Xuedong,et al. BGL coal gasification technology analysis and summary on the operation of China national coal tooker coal to fertilizer gasifier[J]. Coal Processing & Comprehensive Utilization,2015(6):45−49,68.
  • Cited by

    Periodical cited type(16)

    1. 段瑞威. 基于知识图谱的煤矿安全风险管控方法. 工矿自动化. 2025(06)
    2. 马晟翔,姜伟,何宇鹏,王艺清,周煜乐. 基于Grey-DEMATEL-ISM法的煤矿企业安全管理影响因素研究. 安全. 2025(02): 50-56 .
    3. 邓飞. 煤矿安全监控系统研究现状与展望. 矿业安全与环保. 2025(01): 14-19+29 .
    4. 赵晋. 基于PCA-CRITIC-KIC耦合方法的煤矿安全生产管理评价模型. 科技与创新. 2025(06): 16-18+23 .
    5. 曲越,李绍良,张磊,付翔,王朋飞,吕月. 基于数据驱动的工作面采煤设备数字孪生系统研究与应用. 自动化应用. 2025(07): 121-124+128 .
    6. 耿振,李茂政,王世聪,张家祥. 市政工程EPC联合体安全管理优化提升的实践与探索. 价值工程. 2025(16): 10-13 .
    7. 梁清. 双重预防机制构建理论与实务探究. 安全. 2024(01): 51-58 .
    8. 王佳斌,李国清,强兴邦,白云龙,王秋玲,赵威. 基于双重预防体系的矿山安全风险智能分析系统. 金属矿山. 2024(01): 99-108 .
    9. 贺仁华,黄林兰. 基于数字孪生的露天金属矿安全管理研究. 价值工程. 2024(07): 10-12 .
    10. 邢震. 面向智能矿山的数字孪生技术研究进展. 工矿自动化. 2024(03): 22-34+41 .
    11. 王学文,刘曙光,王雪松,谢嘉成,刘京铨,王禧龙. 面向多人-多机复杂协作任务的煤矿XR智能运维系统. 煤炭学报. 2024(04): 2124-2140 .
    12. 周建. 基于“一通三防”的矿井智能管控技术研究与应用. 中国煤炭. 2024(06): 59-66 .
    13. 王宁. 矿井变电站无人巡检技术研究及应用分析. 西部探矿工程. 2024(12): 99-101 .
    14. 胡建华,吴友楠,马凤成,肖红星,赵祥波. 矿山安全双控预防性机制信息化平台设计与实现. 黄金科学技术. 2024(06): 1116-1129 .
    15. 张志刚,张庆华,刘军. 我国煤与瓦斯突出及复合动力灾害预警系统研究进展及展望. 煤炭学报. 2024(S2): 911-923 .
    16. 张娜,冯套柱,郭道燕. 能源矿山稳定风险网络结构特征. 西安科技大学学报. 2023(03): 586-592 .

    Other cited types(10)

Catalog

    Article views (147) PDF downloads (39) Cited by(26)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return