Loading [MathJax]/jax/output/SVG/jax.js
Advance Search

ZHANG Tianjun,MENG Yukai,PANG Mingkun,et al. Effect of effective stress on the evolution of permeability patterns in perforated fractured coal bodies[J]. Coal Science and Technology,2023,51(S1):122−131

. DOI: 10.13199/j.cnki.cst.2022-1349
Citation:

ZHANG Tianjun,MENG Yukai,PANG Mingkun,et al. Effect of effective stress on the evolution of permeability patterns in perforated fractured coal bodies[J]. Coal Science and Technology,2023,51(S1):122−131

. DOI: 10.13199/j.cnki.cst.2022-1349

Effect of effective stress on the evolution of permeability patterns in perforated fractured coal bodies

Funds: 

Natural Science Foundation of Shaanxi Province (2021JM-390); China Postdoctoral Science Foundation Project (2020M683680XB)

More Information
  • Received Date: August 19, 2022
  • Available Online: May 18, 2023
  • The effective stress is the main reason affecting the percolation characteristics of the coal body. In order to study the evolution of percolation characteristics of fractured coal bodies around boreholes during gas pre-pumping, based on the Ergun equation and using the theory of effective stress in porous media, seepage tests of four different grades of mixed grain size fractured coal bodies were carried out to study the pore structure characteristics of different pore structure coal bodies under the action of triaxial stress, and the mechanism of the effective stress on the seepage of pore structure coal bodies was obtained. The test results show that: ① under triaxial stress, the internal seepage state of broken coal is close to non Darcy seepage. When the confining pressure is constant, the deviation from linear fitting is more obvious with the increase of axial pressure. ② The skeletal state parameters such as particle size gradation and porosity affect the permeability performance of fractured coal bodies. Based on the Ergun equation, a functional relationship between porosity and permeability and non-Darcy flow factor was derived, and the change in pore structure of fractured coal samples was obtained to fit the exponential function with the change in permeability and non-Darcy flow factor. ③ In the triaxial action, when the effective stress is loaded to the interval of 0.55-0.75 MPa, the permeability decreases sharply, especially when n=0.8, the permeability of the coal sample decreases the most, when the effective stress is greater than 0.75 MPa, the permeability decrease rate becomes smaller and smaller, the law of permeability evolution with effective stress can be expressed by expressed by the equationk=aebσe+c. Based on the above results, external stress is applied around the hole (σ) When combined with internal stress (pore pressureP), the seepage law of broken coal is closely related to skeleton deformation and pore structure change. Combined with the internal relationship between effective stress change and pore permeability, the evolution process of coal permeability around the hole in the process of gas drainage can be accurately calculated. The research on the seepage law of broken coal can be used as an important reference for the implementation of gas drainage design and effect evaluation.

  • [1]
    袁 亮,张平松. 煤炭精准开采地质保障技术的发展现状及展望[J]. 煤炭学报,2019,44(8):2277−2284. doi: 10.13225/j.cnki.jccs.KJ19.0571

    YANG Liang,ZHANG Pingsong. Development status and prospect of geological guarantee technology for precise coal mining[J]. Journal of China Coal Society,2019,44(8):2277−2284. doi: 10.13225/j.cnki.jccs.KJ19.0571
    [2]
    程远平,周红星. 煤与瓦斯突出预测敏感指标及其临界值研究进展[J]. 煤炭科学技术,2021,49(1):146−154. doi: 10.13199/j.cnki.cst.2021.01.009

    CHENG Yuanping,ZHOU Hongxing. Research progress of sensitive index and their critical values for coal and gas outburst prediction[J]. Coal Science and Technology,2021,49(1):146−154. doi: 10.13199/j.cnki.cst.2021.01.009
    [3]
    袁 亮. 深部采动响应与灾害防控研究进展[J]. 煤炭学报,2021,46(3):716−725.

    YUAN Liang. Research progress of mining response and disaster prevention and control in deep coal mines[J]. Journal of China Coal Society,2021,46(3):716−725.
    [4]
    鞠 杨,任张瑜,谢和平,等. 岩石灾变非连续结构与多物理场效应的透明解析与透明推演[J]. 煤炭学报,2022,47(1):210−232.

    JU Yang,REN Zhangyu,XIE Heping,et al. Transparent analysis and transparent derivation of discontinuous structure and multi-physical field effects in rock catastrophes[J]. Journal of China Coal Society,2022,47(1):210−232.
    [5]
    谢和平,苗鸿雁,周宏伟. 我国矿业学科“十四五”发展战略研究[J]. 中国科学基金,2021,35(6):856−863. doi: 10.16262/j.cnki.1000-8217.2021.06.002

    XIE Heping,MIAO Hongyan,ZHOU Hongwei. Development strategy of mining discipline in China during the 14th Five-Year Plan period[J]. Bulletin of National Natural Science Foundation of China,2021,35(6):856−863. doi: 10.16262/j.cnki.1000-8217.2021.06.002
    [6]
    黄启翔,尹光志,姜永东. 地应力场中煤岩卸围压过程力学特性试验研究及瓦斯渗透特性分析[J]. 岩石力学与工程学报,2010,29(8):1639−1648.

    HUANG Qixiang,YIN Guangzhi,JIANG Yandong. Experimental study of mechanical characteristics of coal specimen in process of unloading confining pressure in geostress field and analysis of gas seepage characteristics[J]. Chinese Journal of Rock Mechanics and Engineering,2010,29(8):1639−1648.
    [7]
    许 江,魏仁忠,程 亮,等. 煤与瓦斯突出流体多物理参数动态响应试验研究[J]. 煤炭科学技术,2022,50(1):159−168. doi: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201015

    XU Jiang,WEI Renzhong,CHENG Liang,et al. Experimental study on the dynamic response of coal and gas outburst fluid with physical parameters[J]. Coal Science and Technology,2022,50(1):159−168. doi: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201015
    [8]
    袁 梅,王玉丽,李 闯,等. 粒径-温度耦合作用下煤中瓦斯解吸规律试验研究[J]. 煤矿安全,2019,50(12):32−35, 40. doi: 10.13347/j.cnki.mkaq.2019.12.008

    YUAN Mei,WANG Yuli,LI Chuang,et al. Experimental study on the coupling effect of particle size and temperature on gas desorption in coal[J]. Safety in Coal Mines,2019,50(12):32−35, 40. doi: 10.13347/j.cnki.mkaq.2019.12.008
    [9]
    李 波,任永婕,张路路,等. 液氮对含水煤岩体增透作用的影响机制研究[J]. 煤炭科学技术,2018,46(12):145−150. doi: 10.13199/j.cnki.cst.2018.12.023

    LI Bo,REN Yongjie,ZHANG Lulu,et al. Study on influence mechanism of liquid nitrogen to permeability improved function of water bearing coal and rock mass[J]. Coal Science and Technology,2018,46(12):145−150. doi: 10.13199/j.cnki.cst.2018.12.023
    [10]
    李晓泉,尹光志. 含瓦斯煤的有效体积应力与渗透率关系[J]. 重庆大学学报,2011,34(8):103−108. doi: 10.11835/j.issn.1000-582X.2011.08.018

    LI Xiaoquan,YIN Guangzhi. Relationship between effective volumetric stress and permeability of gas-filled coal[J]. Journal of Chongqing University,2011,34(8):103−108. doi: 10.11835/j.issn.1000-582X.2011.08.018
    [11]
    李波波,王 斌,杨 康,等. 贵州六盘水矿区煤岩孔隙发育程度及渗透率演化规律研究[J]. 安全与环境学报,2020,20(4):1305−1314. doi: 10.13637/j.issn.1009-6094.2019.0423

    LI Bobo,WANG Bin,YANG Kang,et al. Growing degree of t-he coal pores and the permeability evolution regularity in Liup-anshui mine area, Guizhou[J]. Journal of Safety and Environment,2020,20(4):1305−1314. doi: 10.13637/j.issn.1009-6094.2019.0423
    [12]
    GHABEZLOO S,SULEM J,GUEDON S,et al. Effective stress law for the permeability of a limestone[J]. International Journal of Rock Mechanics and Mining Sciences,2009,46(2):297−306. doi: 10.1016/j.ijrmms.2008.05.006
    [13]
    鲁 俊,尹光志,高 恒,等. 真三轴加载条件下含瓦斯煤体复合动力灾害及钻孔卸压试验研究[J]. 煤炭学报,2020,45(5):1812−1823. doi: 10.13225/j.cnki.jccs.2019.0530

    LU Jun,YIN Guangzhi,GAO Heng,et al. Experimental study on compound dynamic disaster and drilling pressure relief of gas-bearing coal under true triaxial loading[J]. Journal of China Coal Society,2020,45(5):1812−1823. doi: 10.13225/j.cnki.jccs.2019.0530
    [14]
    李 鹏. 复合加卸载条件下含瓦斯煤渗流特性及其应用研究[D]. 北京: 中国矿业大学(北京), 2015: 19−39.

    LI Peng. Research on seepage characteristics of coal containing gas under complex loading-unloading and its application[D]. Beijing: China University of Mining and Technology (Beijing), 2015: 19−39.
    [15]
    程远平,刘洪永,郭品坤,等. 深部含瓦斯煤体渗透率演化及卸荷增透理论模型[J]. 煤炭学报,2014,39(8):1650−1658.

    CHENG Yuanping,LIU Hongyong,GUO Pinkun,et al. A theoretical model and evolution of characteristic of mining-enhanced permeability in deeper gassy coal seam[J]. Journal of China Coal Society,2014,39(8):1650−1658.
    [16]
    白 鑫,王登科,田富超,等. 三轴应力加卸载作用下损伤煤岩渗透率模型研究[J]. 岩石力学与工程学报,2021,40(8):1536−1546. doi: 10.13722/j.cnki.jrme.2021.0053

    BAI Xin,WANG Dengke,TIAN Fuchao,et al. Permeability model of damaged coal rock under triaxial stress loading-unloading[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(8):1536−1546. doi: 10.13722/j.cnki.jrme.2021.0053
    [17]
    张天军,李 洋,庞明坤,等. 砾石含水层中质量流失对孔隙渗透率的影响[J]. 煤炭学报,2022,47(6):2360−2368. doi: 10.13225/j.cnki.jccs.2021.1081

    ZHANG Tianjun,LI Yang,PANG Mingkun,et al. Effect of mass loss on pore permeability in gravel aquifers[J]. Journal of China Coal Society,2022,47(6):2360−2368. doi: 10.13225/j.cnki.jccs.2021.1081
    [18]
    PANG Mingkun, ZHANG Tianjun, et al. Measurement of the coefficient of seepage characteristics in pore-crushed coal bodies around gas extraction boreholes[J]. Energy, 2022: 124276.
    [19]
    PANG M,ZHANG Tianjun,MENG Yukai,et al. Experimental study on the permeability of crushed coal medium based on the Ergun equation[J]. Scientific Reports,2021,11(1):1−10. doi: 10.1038/s41598-020-79139-8
    [20]
    张天军,刘 楠,庞明坤,等. 级配破碎煤岩体压实过程中再破碎特征研究[J]. 采矿与安全工程学报,2021,38(2):380−387.

    ZHANG Tianjun,LIU Nan,PANG Mingkun,et al. Re-crushing characteristic in the compaction process of graded crushed coal rock mass[J]. Journal of Mining & Safety Engineering,2021,38(2):380−387.
    [21]
    SHEN Xianwen,LI Longjian,CUI Wenzhi,et al. Improvement of fractal model for porosity and permeability in porous materials[J]. International Journal of Heat and Mass Transfer,2018,121:1307−1315. doi: 10.1016/j.ijheatmasstransfer.2018.01.084
    [22]
    孔祥言. 高等渗流力学[M]. 合肥. 中国科学技术大学出版社, 2010.

    KONG Xiangyin. Higher seepage mechanics [M]. Hefei. University of Science and Technology of China Press, 2010.
    [23]
    KHAN M I, SHOAIB M, ZUBAIR G, et al. Neural artificial networking for nonlinear Darcy–Forchheimer nanofluidic slip flow[J]. Applied Nanoscience, 2022: 1−20.
    [24]
    尹光志,鲁 俊,张东明,等. 真三轴应力条件下钻孔围岩塑性区及增透半径研究[J]. 岩土力学,2019,40(S1):1−10. doi: 10.16285/j.rsm.2018.1873

    YIN Guangzhi,LU Jun,ZHANG Dongming,et al. Study on plastic zone and permeability-increasing borehole surrounding rock under true triaxial stress conditions[J]. Rock and Soil Mechanics,2019,40(S1):1−10. doi: 10.16285/j.rsm.2018.1873
    [25]
    张天军,庞明坤,蒋兴科,等. 负压对抽采钻孔孔周煤体瓦斯渗流特性的影响[J]. 岩土力学,2019,40(7):2517−2524. doi: 10.16285/j.rsm.2018.1543

    ZHANG Tiajun,PANG Mingkun,JIANG Xingke,et al. Influence of negative pressure on gas percolation of coal body in perforated drilling hole[J]. Rock and Soil Mechanics,2019,40(7):2517−2524. doi: 10.16285/j.rsm.2018.1543
    [26]
    SOBIESKI W, ZHANG Q. Sensitivity analysis of Kozeny-Carman and Ergun equations[J]. Technical Sciences/University of Warmia and Mazury in Olsztyn, 2014 (17 (3)): 235−248.
    [27]
    PERRET F, BABICH A, SENK D. Effect of pulverized coal residues on the blast furnace streaming conditions[J]. Ironmaking & Ste-elmaking, 2022: 1−7.
    [28]
    NOMURA S,YAMAMOTO Y,SAKAGUCHI H. Modified expression of Kozeny–Carman equation based on semilog–sigmoid function[J]. Soils and Foundations,2018,58(6):1350−1357. doi: 10.1016/j.sandf.2018.07.011
    [29]
    毛小龙,刘月田,冯月丽,等. 双重有效应力再认识及其综合作用[J]. 石油科学通报,2018,3(4):390−398. doi: 10.3969/j.issn.2096-1693.2018.04.035

    MAO Xuailong,LIU Yuetian,FENG Yueli,et al. Re-recognition of dual effective stresses and comprehensive effect[J]. Petroleum Science Bulletin,2018,3(4):390−398. doi: 10.3969/j.issn.2096-1693.2018.04.035
    [30]
    HEYMANN G,BRINK G. Soil collapse from an effective stress perspective[J]. Journal of the South African Institution of Civil Engineering,2014,56(3):30−33.
    [31]
    李传亮,朱苏阳. 再谈双重有效应力−对《双重有效应力再认识及其综合作用》一文的讨论与分析[J]. 石油科学通报,2019,4(4):414−429.

    LI Chuanliang,ZHU Suyang. Discussion of dual effective stresses in porous media—Analysis on the paper of recognition of dual effective stresses and the comprehensive effect[J]. Petroleum Science Bulletin,2019,4(4):414−429.

Catalog

    Article views (91) PDF downloads (29) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return