Advance Search

WANG Hongwei,ZHANG Cuimin,SONG Jiaqi,et al. Preliminary study on construction of visual database for structural morphology and mechanical properties of coal and rock cracks[J]. Coal Science and Technology,2023,51(S1):27−39

. DOI: 10.13199/j.cnki.cst.2022-1328
Citation:

WANG Hongwei,ZHANG Cuimin,SONG Jiaqi,et al. Preliminary study on construction of visual database for structural morphology and mechanical properties of coal and rock cracks[J]. Coal Science and Technology,2023,51(S1):27−39

. DOI: 10.13199/j.cnki.cst.2022-1328

Preliminary study on construction of visual database for structural morphology and mechanical properties of coal and rock cracks

Funds: 

Open Fund Project of National and Local Joint Engineering Research Center for Safe and Accurate Coal Mining (Anhui University of Science and Technology) (EC2022001); Beijing Natural Science Foundation Project (8202041); National Natural Science Foundation of China (41872205)

More Information
  • Received Date: August 16, 2022
  • Available Online: May 17, 2023
  • The occurrence status, structural morphology and mechanical properties of cracks in coal and rock have a significant impact on its material strength, deformability and impact resistance. Determining the spatial geometry, spreading form and mechanical properties of cracks are of great important both in theory and engineering application for studying the mechanical properties of coal and rock, and the construction of visual database of cracks morphology and mechanical properties of coal and rock mass can provide new idea and research direction for study the identification of crack morphology diversity. Starting from the concept of database and the basic method of establishing a database, the basic idea of the construction of visual database of cracks is designed, a one-to-many mapping relationship between coal-rock mass and crack entities is established, and the basic database framework including the intelligent acquisition of crack multi-source data, intelligent classification and storage of crack properties and visual analysis and implementation of morphological structure is constructed. The features such as intelligent identification of cracks morphology in visual database, multi-angle discrimination based on classification properties of structural morphology and crack mechanics, visualization of the distribution form of geometric structures and intelligent transmission of crack properties based on bar code and QR-code is realized. The project background is Da’anshan coal mine of Beijing Haohua Energy Resource Co., Ltd. Coal rock samples in complex geological formations such as thrust faults and reversed folds were obtained. The 3D digital model of several cracks was extracted by CT scanning, image analysis processing and 3D reconstruction. Combined with different attribute classification standards, the morphological characteristics, distribution location and geometric characteristics of cracks are calculated and classified based on the intelligent recognition algorithm. In addition, the basic module of visualized database of coal and rock crack is established, the crack retrieval and data entry are carried out, and the binding morphology of the crack structure is demonstrated, laying a foundation for the establishment of visual database.

  • [1]
    WANG Hongwei,WANG Zeliang,JIANG Yaodong,et al. New approach for the digital reconstruction of complex mine faults and its application in mining[J]. International Journal of Coal Science and Technology,2022,9(3):1−15.
    [2]
    王登科,张 平,魏建平,等. CT可视化的受载煤体三维裂隙结构动态演化试验研究[J]. 煤炭学报,2019,44(S2):574−584.

    WANG Dengke,ZHANG Ping,WEI Jianping,et al. Research on dynamic evolution of 3D fracture structure of loaded coal body based on CT visualization[J]. Journal of China Coal Society,2019,44(S2):574−584.
    [3]
    刘玉龙,汤达祯,许 浩,等. 基于X-CT技术不同煤岩类型煤储层非均质性表征[J]. 煤炭科学技术,2017,45(3):141−146.

    LIU Yulong,TANG Dazhen,XU Hao,et al. Description of coal reservoir heterogeneity under different lithotypes based on X-CT technology[J]. Coal Science and Technology,2017,45(3):141−146.
    [4]
    刘国方,宋选民,霍昱名. 基于CT技术的裂隙煤体细观数值重构方法[J]. 矿业研究与开发,2020,40(8):155−159.

    LIU Guofang,SONG Xuanmin,HUO Yuming. Micro-structure numerical reconstruction of fractured coal body based on CT technology[J]. Mining Research and Development,2020,40(8):155−159.
    [5]
    张 平,王登科,于 充,等. 基于工业CT扫描的数字煤心构建过程及裂缝形态表征[J]. 河南理工大学学报(自然科学版),2019,38(6):10−16.

    ZHANG Ping,WANG Dengke,YU Chong,et al. Digital coal core construction process and crack characterization based on industrial CT scanning[J]. Journal of Henan Polytechnic University (Natural Science),2019,38(6):10−16.
    [6]
    CAI Yan,LIU Dan,MATHEWS J P,et al. Permeability evolution in fractured coal-Combining triaxial confinement with X-ray computed tomography, acoustic emission and ultrasonic techniques[J]. International Journal of Coal Geology,2014,122(Complete):91−104.
    [7]
    赵延林,刘 强,刘 欢,等. 水-力耦合作用下单裂隙灰岩三轴压缩与声发射试验及压剪断裂模型[J]. 煤炭学报,2021,46(12):3855−3868.

    ZHAO Yanlin,LIU Qiang,LIU Huan,et al. Triaxial compression and acoustic emission tests on single cracked limestone and compression-shear fracture model under hydraulic-mechanical coupling action[J]. Journal of China Coal Society,2021,46(12):3855−3868.
    [8]
    秦 楠,张作良,冯学志,等. 蠕变作用后裂隙类岩石单轴强度和裂纹扩展规律研究[J]. 煤炭科学技术,2020,48(12):244−249.

    QIN Nan,ZHANG Zuoliang,FENG Xuezhi,et al. Study on uniaxial strength and crack propagation law of cracked similar rock after creep[J]. Coal Science and Technology,2020,48(12):244−249.
    [9]
    王 莉. 初始裂隙对岩石抗拉特性的影响[J]. 煤炭科学技术,2020,48(S1):66−70.

    WANG Li. Effect of initial flaw on tensile properties of rock[J]. Coal Science and Technology,2020,48(S1):66−70.
    [10]
    NIU Xingang. Impact analysis of the open type crack characteristics of coal and rock burst[J]. IOP Conference Series:Earth and Environmental Science,2018,208(1):1−7.
    [11]
    康红普,伊丙鼎,高富强,等. 中国煤矿井下地应力数据库及地应力分布规律[J]. 煤炭学报,2019,44(1):23−33.

    KANG Hongpu,YI Bingding,GAO Fuqiang,et al. Database and characteristics of underground in-situ stress distribution in Chinese coal mines[J]. Journal of China Coal Society,2019,44(1):23−33.
    [12]
    王宏伟, 汤建伟, 秦 舒, 等. 基于独立性和时效性管理的弹性力学经典解答的数据库构筑[J]. 力学与实践, 2020, 42(5): 603−608.

    WANG Hongwei, TANG Jianwei, QIN Shu, et al. Construction of classical elasticity solution database with independence and timeliness management. Mechanics in Engineering, 2020, 42(5): 603−608.
    [13]
    李 震,孙效玉,田凤亮. 露天矿道路网数据库的设计与实现[J]. 煤炭科学技术,2020,48(S1):129−133.

    LI Zhen,SUN Xiaoyu,TIAN Fengliang. Design and implementation of road network database in open-pit mine[J]. Coal Science and Technology,2020,48(S1):129−133.
    [14]
    LANG Qiuling,LI Guangjie,YANG Miao. The Setting of the Database Management System for Geotechnical Engineering Exploration[J]. Advanced Materials Research,2013,671-674(2):2091−2094.
    [15]
    刘智慧,张泉灵. 大数据技术研究综述[J]. 浙江大学学报(工学版),2014,48(6):957−972.

    LIU Zhihui,ZHANG Quanling. Research overview of bigdata technology[J]. Journal of Zhejiang University (Engineering Science),2014,48(6):957−972.
    [16]
    侯水云,毛善君,李文生,等. 煤矿地测“一张图”平台关键技术研究[J]. 煤炭科学技术,2017,45(8):32−36,54. doi: 10.13199/j.cnki.cst.2017.08.006

    HOU Shuiyun,MAO Shanjun,LI Wensheng,et al. Study on key technology ofet a mapp al. Stu in coal mine[J]. Coal Science and Technology,2017,45(8):32−36,54. doi: 10.13199/j.cnki.cst.2017.08.006
    [17]
    安鱼飞. 煤矿智慧矿山三维智能管控系统设计与实现[J]. 中国煤炭,2021,47(7):51−61. doi: 10.3969/j.issn.1006-530X.2021.07.008

    AN Yufei. Design and implementation of intelligent mine 3D intelligent management and control system for coal mine[J]. Chinese coal,2021,47(7):51−61. doi: 10.3969/j.issn.1006-530X.2021.07.008
    [18]
    毛善君,崔建军,王世斌,等. 煤矿智能开采信息共享管理平台构建研究[J]. 煤炭学报,2020,45(6):1937−1948.

    MAO Shanjun,CUI Jianjun,WANG Shibin,et al. Construction of information sharing platform of mine safe production for intelligent mining[J]. Journal of China Coal Society,2020,45(6):1937−1948.
    [19]
    付 裕,冯中亮,李佩禅. 基于CT扫描的煤岩非均质特征及其重建模型数值分析[J]. 采矿与安全工程学报,2020,37(4):828−835.

    FU Yu,FENG Zhongliang,Ll Peichan. Heterogeneous characteristics of coal based on CT scanning and numerical analysis of its reconstruction model[J]. Journal of Mining & Safety Engineering,2020,37(4):828−835.
    [20]
    毛灵涛,袁则循,连秀云,等. 基于CT数字体相关法测量红砂岩单轴压缩内部三维应变场[J]. 岩石力学与工程学报,2015,34(1):21−30.

    MAO Lingtao,YUAN Zexun,LIAN Xiuyun,et al. Measurement of 3D strain field in red stone sample under uniaxial compression with computer tomography and digital volume correlation method[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(1):21−30.
    [21]
    宋红华,赵毅鑫,姜耀东,等. 单轴受压条件下煤岩非均质性对其破坏特征的影响[J]. 煤炭学报,2017,42(12):3125−3132. doi: 10.13225/j.cnki.jccs.2017.0588

    SONG Honghua,ZHAO Yixin,JIANG Yaodong,et al. Influence of heterogeneity on the failure characteristics of coal under uniaxial compression condition[J]. Journal of China Coal Society,2017,42(12):3125−3132. doi: 10.13225/j.cnki.jccs.2017.0588
    [22]
    ZHAO Yixin,SUN Yingfeng,LIU Shimin,et al. Pore structure characterization of coal by NMR cryoporometry[J]. Fuel,2017,190(2):359−369.
    [23]
    李治豪,陈世江,冯宇迪,等. 不同水压加载下煤体裂隙渗流数值模拟[J]. 科学技术与工程,2021,21(6):2255−2261. doi: 10.3969/j.issn.1671-1815.2021.06.018

    LI Zhihao,CHEN Shijiang,FENG Yudi,et al. Numerical simulation of coal fracture seepage under different pressure loading[J]. ScienceTechnology and Engineering,2021,21(6):2255−2261. doi: 10.3969/j.issn.1671-1815.2021.06.018
    [24]
    周宏伟,刘泽霖,孙晓彤,等. 深部煤体注水过程中渗流通道演化特征[J]. 煤炭学报,2021,46(3):867−875.

    ZHOU Hongwei,LIU Zelin,SUN Xiaotong,et al. Evolution characteristics of seepage channel during water infusion in deep coal samples[J]. Journal of China Coal Society,2021,46(3):867−875.
    [25]
    刘彦飞,汤达祯,许 浩,等. 基于核磁共振的煤岩孔裂隙应力变形特征[J]. 煤炭学报,2015,40(6):1415−1421.

    LIU Yanfei,TANG Dazhen,XU Hao,et al. Characteristics of the stress deformation of pore-fracture in coal based on nuclear magnetic resonance[J]. Journal of China Coal Society,2015,40(6):1415−1421.
    [26]
    TANG Zongqing,ZHAI Cheng,ZOU Quanle,et al. Changes to coal pores and fracture development by ultrasonic wave excitation using nuclear magnetic resonance[J]. Fuel,2016,186(12):571−578.
    [27]
    杨永飞,刘夫贵,姚 军,等. 基于生成对抗网络的页岩三维数字岩芯构建[J]. 西南石油大学学报(自然科学版),2021,43(5):73−83.

    YANG Yongfei,LIU Fugui,YAO Jun,et al. Reconstruction of 3D Shale digital rock based on generative adversarial network[J]. Journal of Southwest Petroleum University (Science & Technology Edition),2021,43(5):73−83.
    [28]
    JIANG Xiaofang,DENG Shouchun,LI Haibo,et al. Characterization of 3D pore nanostructure and stress-dependent permeability of organic-rich shales in northern Guizhou Depression, China[J]. Journal of Rock Mechanics and Geotechnical Engineering,2022,14(2):407−422. doi: 10.1016/j.jrmge.2021.08.019
    [29]
    LIU S,SANG S,MA J,et al. Three-dimensional digitalization modeling characterization of pores in high-rank coal in the southern Qinshui basin[J]. Geoences Journal,2018,23:1−14.
    [30]
    苏现波,冯艳丽,陈江峰. 煤中裂隙的分类[J]. 煤田地质与勘探,2002(4):21−24. doi: 10.3969/j.issn.1001-1986.2002.04.008

    SU Xianbo,FENG Yanli,CHEN Jiangfeng. Classification of cracks in coal[J]. Coal Gelogy & Exploration,2002(4):21−24. doi: 10.3969/j.issn.1001-1986.2002.04.008
    [31]
    陈贞龙,王运海,王 宁,等. 延川南地区煤储层孔裂隙特征研究[J]. 油气藏评价与开发,2013,3(3):67−71. doi: 10.3969/j.issn.2095-1426.2013.03.016

    CHEN Zhenlong,WANG Yunhai,WANG Ning,et al. Research on the pore-fracture properties of coal reservoirs in South Yanchuan region[J]. Reservoir Evaluation and Development,2013,3(3):67−71. doi: 10.3969/j.issn.2095-1426.2013.03.016
    [32]
    郦正能. 应用断裂力学[M]. 北京: 北京航空航天大学出版社, 2012: 18-32.

    LI Zhengneng Applied fracture mechanics [M]. Beijing: Beijing University of Aeronautics and Astronautics Press, 2012: 18-32.
    [33]
    王明吉,倪子颜,李玉爽,等. 基于Python语言的HITRAN数据库接口可视化工具的开发与应用[J]. 化工自动化及仪表,2021,48(1):79−84.

    WANG Mingji,NI Ziyan,LI Yushuang,et al. Development and application of HITRAN database interface visualization tool based on Python language[J]. Chemical Automation and Instrumentation,2021,48(1):79−84.
    [34]
    万 勇,万 莉,戴永寿. 基于C#与MATLAB混合编程的管道缺陷类型识别实验系统软件开发[J]. 实验技术与管理,2003,37(3):294−300.

    WAN Yong,WAN Li,DAI Yongshou. Development of experimental system software of defect type detection for pipeline based on C# and Matlab hybrid programming[J]. Experimental Technology and Management,2003,37(3):294−300.
    [35]
    孟维成. 对基于Web的交互式数据库查询技术探讨[J]. 现代信息科技,2020,4(8):133−135. doi: 10.19850/j.cnki.2096-4706.2020.08.043

    MENG Weicheng. Discussion on Web-based interactive database query technology[J]. Modern Information Technology,2020,4(8):133−135. doi: 10.19850/j.cnki.2096-4706.2020.08.043
    [36]
    WANG Hongwei,JIANG Yaodong,SHENG Xue,et al. Investigation of intrinsic and external factors contributing to the occurrence of coal bumps in the mining area of western Beijing, China[J]. Rock Mechanics and Rock Engineering,2017,50(4):1033−1047. doi: 10.1007/s00603-016-1146-2
  • Cited by

    Periodical cited type(1)

    1. 李小辉,邢楷,彭群. 含水纵向裂隙煤岩破裂特征与演化规律研究. 矿业研究与开发. 2024(07): 191-196 .

    Other cited types(3)

Catalog

    Article views (94) PDF downloads (40) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return