XU Yanchun,HUANG Lei. Full-time and space early-warning method for floor water inrush in working face based on microseismic monitoring[J]. Coal Science and Technology,2023,51(1):369−382
. DOI: 10.13199/j.cnki.cst.2022-1286Citation: |
XU Yanchun,HUANG Lei. Full-time and space early-warning method for floor water inrush in working face based on microseismic monitoring[J]. Coal Science and Technology,2023,51(1):369−382 . DOI: 10.13199/j.cnki.cst.2022-1286 |
To explore the difference of microseismic characteristics in different periods and spaces of the working face and then realize the early warning of water damage, a full-time and space early-warning method for floor water inrush based on microseismic monitoring was proposed based on typical case analysis. The so-called “full-time and space” refers to the 3 time periods of the whole time cycle of the working face, including pre-mining period, advanced-mining period, and mining period, and the 7 evaluation zones of the whole space of the working face. In the first period, based on the engineering information of boreholes and microseismic response characteristics, the expression method of water inrush risk was formed, and the primary abnormal zones were determined, thus realizing the long-term prediction of water inrush risk in the pre-mining period. In the second period, the fixed working face was set up and the microseismic events were repositioned. Based on the nuclear density analysis of the frequency and energy of microseismic events at the “fixed working face”, the water inrush characteristics of the leading influence zone, the lagging influence zone and the lateral influence zone were determined, realizing the water inrush risk early-warning in the advanced mining period. In the third period, the 2D-CE method was introduced to normalize the microseismic events on the plane, the early-warning aquifer was defined, and the roof damage zone, the floor damage zone, and the floor mining damage zone were determined in combination with the frequency of microseismic events and the energy nuclear density analysis, realizing the water inrush risk prediction in the mining period. At the same time, according to the mining verification results, the prediction method in the early phase was modified to serve the water inrush early warning in the subsequent working face, making the prediction results of floor water inrush more accurate in Jiaozuo and Hanxing mining areas.
[1] |
武 强. 我国矿井水防控与资源化利用的研究进展、问题和展望[J]. 煤炭学报,2014,39(5):795−805.
WU Qiang. Progress, problems and prospects of prevention and control technology of mine water and reutilization in China[J]. Journal of China Coal Society,2014,39(5):795−805.
|
[2] |
许延春, 戴华阳. 沉陷控制与特殊开采[M]. 徐州: 中国矿业大学出版社, 2017.
|
[3] |
张党育,蒋勤明,高春芳,等. 华北型煤田底板岩溶水害区域治理关键技术研究进展[J]. 煤炭科学技术,2020,48(6):31−36.
ZHANG Dangyu,JIANG Qinming,GAO Chunfang,et al. Study progress on key technologies for regional treatment of Karst water damage control in the floor of North China Coalfield[J]. Coal Science and Technology,2020,48(6):31−36.
|
[4] |
杨天鸿,师文豪,李顺才,等. 破碎岩体非线性渗流突水机理研究现状及发展趋势[J]. 煤炭学报,2016,41(7):1598−1609.
YANG Tianhong,SHI Wenhao,LI Shuncai,et al. State of the art and trends of water-inrush mechanism of nonlinear flow in fractured rock mass[J]. Journal of China Coal Society,2016,41(7):1598−1609.
|
[5] |
姜福兴,叶根喜,王存文,等. 高精度微震监测技术在煤矿突水监测中的应用[J]. 岩石力学与工程学报,2008,27(9):1932−1938.
JIANG Fuxing,YE Genxi,WANG Cunwen,et al. Application of high-precison microseismic monitoring technique to water inrush monitoring in coal mine[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(9):1932−1938.
|
[6] |
李全生,李晓斌,许家林,等. 岩层采动裂隙演化规律与生态治理技术研究进展[J]. 煤炭科学技术,2022,50(1):28−47.
LI Quansheng,LI Xiaobin,XU Jialin,et al. Research advances in mining fractures evolution law of rock strata and ecological treatment technology[J]. Coal Science and Technology,2022,50(1):28−47.
|
[7] |
尹尚先,连会青,刘德民,等. 华北型煤田岩溶陷落柱研究70年: 成因·机理·防治[J]. 煤炭科学技术,2019,47(11):1−29.
YIN Shangxian,LIAN Huiqing,LIU Demin,et al. 70 years of investigation on Karst collapse column in North China Coalfield: cause of origin, mechanism and prevention[J]. Coal Science and Technology,2019,47(11):1−29.
|
[8] |
靳德武,赵春虎,段建华,等. 煤层底板水害三维监测与智能预警系统研究[J]. 煤炭学报,2020,45(6):2256−2264. doi: 10.13225/j.cnki.jccs.ZN20.0309
JIN Dewu,ZHAO Chunhu,DUAN Jianhua,et al. Research on 3D monitoring and intelligent early warning system for water hazard of coal seam floor[J]. Journal of China Coal Society,2020,45(6):2256−2264. doi: 10.13225/j.cnki.jccs.ZN20.0309
|
[9] |
袁 亮. 煤矿典型动力灾害风险判识及监控预警技术研究进展[J]. 煤炭学报,2020,45(5):1557−1566. doi: 10.13225/j.cnki.jccs.dy20.0272
YUAN Liang. Research progress on risk identification, assessment, monitoring and early warning technologies of typical dynamic hazards in coal mines[J]. Journal of China Coal Society,2020,45(5):1557−1566. doi: 10.13225/j.cnki.jccs.dy20.0272
|
[10] |
国家煤矿安全监察局. 煤矿防治水细则[M]. 北京: 煤炭工业出版社, 2018.
|
[11] |
赵毅鑫,姜 耀,王 涛,等. “两硬”条件下冲击地压微震信号特征及前兆识别[J]. 煤炭学报,2012,37(12):1960−1966.
ZHAO Yixin,JIANG Yaodong,WANG Tao,et al. Features of micro-seismic events and precursors of rock burst in underground coal mining with hard-roof[J]. Journal of China Coal Society,2012,37(12):1960−1966.
|
[12] |
潘俊锋,毛德兵,夏永学,等. 基于关联因素前兆监测的冲击地压发生区域与时期初探[J]. 岩石力学与工程学报,2012,31(8):1650−1656.
PAN Junfeng,MAO Debing,XIA Yongxue,et al. Probing into the main occurred area and period of rockburst based on precursory monitoring of associated factors[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(8):1650−1656.
|
[13] |
原富珍,马 克,庄端阳,等. 基于微震监测的董家河煤矿底板突水通道孕育机制[J]. 煤炭学报,2019,44(6):1846−1856.
YUAN Fuzhen,MA Ke,ZHUANG Duanyang,et al. Preparation mechanism of water inrush channels in bottom floor of Dongjiahe coal mine based on microseismic monitoring[J]. Journal of China Coal Society,2019,44(6):1846−1856.
|
[14] |
姜福兴,杨淑华. 微地震监测揭示的采场围岩空间破裂形态[J]. 煤炭学报,2003(4):357−360. doi: 10.3321/j.issn:0253-9993.2003.04.005
JIANG Fuxing,YANG Shuhua. Spatial fracturing progresses of surrounding rock masses in longwall face monitored by microseismic monitoring techniques[J]. Journal of China Coal Society,2003(4):357−360. doi: 10.3321/j.issn:0253-9993.2003.04.005
|
[15] |
姜福兴,尹永明,朱权洁,等. 基于微震监测的千米深井厚煤层综放面支架围岩关系研究[J]. 采矿与安全工程学报,2014,31(2):167−174.
JIANG Fuxing,YIN Yongming,ZHU Quanjie,et al. Relationship between Support and Surrounding rock of fully mechanized caving face in thick coal Seam of kilometer deep mine based on microseismic monitoring technology[J]. Journal of Mining & Safety Engineering,2014,31(2):167−174.
|
[16] |
孙 建,王连国. 基于微震信号突变分析的底板断层突水预测[J]. 煤炭学报,2013,38(8):1404−1410.
SUN Jian,WANG Lianguo. Floor fault water-inrush prediction based on catastrophe analysis of micro-seismic signals[J]. Journal of China Coal Society,2013,38(8):1404−1410.
|
[17] |
靳德武,段建华,李连崇,等. 基于微震的底板采动裂隙扩展及导水通道识别技术研究[J]. 工程地质学报,2021,29(4):962−971.
JIN Dewu,DUAN Jianhua,LI Lianchong,et al. Microseismicity based research for mining induced fracture propagation and water pathway identification technology of floor[J]. Journal of Engineering Geology,2021,29(4):962−971.
|
[18] |
赵 永,杨天鸿,王述红,等. 基于微震反演裂隙的采动岩体损伤分析方法及其工程应用[J]. 岩土工程学报,2022,44(2):305−314.
ZHAO Yong,YANG Tianhong,WANG Shuhong,et al. Damage analysis method for mining rock mass based on microseismic-derived fractures and its engineering application[J]. Chinese Journal of Geotechnical Engineering,2022,44(2):305−314.
|
[19] |
查华胜,张海江,连会青,等. 潘二煤矿A组煤层底板灰岩水害微震监测[J]. 煤炭学报,2022,47(8):3001−3014.
ZHA Huasheng,ZHANG Haijiang,LIAN Huiqing,et al. Microseismic monitoring on limestone water inrush at coal seam floor for group A coal layer of Pan’er Coal Mine[J]. Journal of China Coal Society,2022,47(8):3001−3014.
|
[20] |
程关文,王 悦,马天辉,等. 煤矿顶板岩体微震分布规律研究及其在顶板分带中的应用: 以董家河煤矿微震监测为例[J]. 岩石力学与工程学报,2017,36(S2):4036−4046.
CHENG Guanwen,WANG Yue,MA Tianhui,et al. Research on the partitioning method of the overburden in coal mine based on microseismic monitoring[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(S2):4036−4046.
|
[21] |
许延春,黄 磊,俞洪庆,等. 基于注浆钻孔数据集的注浆工作面底板突水危险性评价体系[J]. 煤炭学报,2020,45(3):1150−1159.
XU Yanchun,HUANG Lei,YU Hongqing,et al. Evaluation system for floor water inrush risk in grout-reinforced working faces based on grouting boreholes dataset[J]. Journal of China Coal Society,2020,45(3):1150−1159.
|
[22] |
许延春,张二蒙,沈星宇,等. 奥灰顶部含水层注浆改造浆液扩散主要影响因素试验研究[J]. 煤炭学报,2021,46(11):3536−3549.
XU Yanchun,ZHANG Ermeng,SHEN Xingyu,et al. Experimental study on the influence of grouting diffusion in fissure aquifer at the top Ordovician limestone[J]. Journal of China Coal Society,2021,46(11):3536−3549.
|
[23] |
刘金海,姜福兴,朱斯陶. 长壁采场动、静支承压力演化规律及应用研究[J]. 岩石力学与工程学报,2015,34(9):1815−1827. doi: 10.13722/j.cnki.jrme.2014.1599
LIU Jinhai,JIANG Fuxing,ZHU Sitao. Study of dynamic and static abutment pressure around longwall face and its application[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(9):1815−1827. doi: 10.13722/j.cnki.jrme.2014.1599
|
[24] |
陈忠辉,谢和平. 综放采场支承压力分布的损伤力学分析[J]. 岩石力学与工程学报,2000,19(4):436−439. doi: 10.3321/j.issn:1000-6915.2000.04.009
CHEN Zhonghui,XIE Heping. Damage mechanics analysis on the distribution of abutment pressure around a coal face[J]. Chinese Journal of Rock Mechanics and Engineering,2000,19(4):436−439. doi: 10.3321/j.issn:1000-6915.2000.04.009
|
[25] |
张党育,盖秋凯,黄 磊,等. 工作面过废弃巷顶板微震时空演化机制及危险性分区[J]. 煤炭学报,2021,46(12):3805−3818.
ZHANG Dangyu,GAI Qiukai,HUANG Lei,et al. Study on the temporal and spatial evolution mechanism and risk zoning of microseisms in working face passing through the roof of old roadway[J]. Journal of China Coal Society,2021,46(12):3805−3818.
|
1. |
孙文斌, 孙志辉, 刘红强, 褚怡心. 基于A-Star算法的深部煤层开采含断层底板突水路径智能识别研究. 采矿与岩层控制工程学报. 2025(03)
![]() | |
2. |
李小二,杨波,张亮亮,海笑云,卢钢,苗葳,周金艳,韩磊. 基于微震监测的工作面过背斜段底板破坏特征研究. 煤矿安全. 2025(02): 137-145 .
![]() | |
3. |
路旭,兰鹏波,吴记军,王宗涛,蒋作鹏. 微震电法耦合监测技术在深部岩体变形监测中的应用. 凿岩机械气动工具. 2025(03): 116-118 .
![]() | |
4. |
罗树其,廖文句,董柏林. 贵州省煤矿水害致灾因素及地测防治水技术案例分析. 能源科技. 2025(02): 17-20 .
![]() | |
5. |
谭花文,谭国龙,马娜娜,宋广雨,卞壮. 基于微震事件能量密度的破碎带回采底板破坏特征研究. 煤炭工程. 2025(04): 82-87 .
![]() | |
6. |
钟振成,王海棠,刘立国,魏世荣. 基于传感器实时监测的矿井突水水源远程自动化监测系统. 自动化与仪表. 2025(05): 76-79 .
![]() | |
7. |
刘盛东,杨彩,章俊,李纯阳,任川. 矿井微震与电法耦合监测技术. 煤炭学报. 2024(01): 586-600 .
![]() | |
8. |
常丰国,王鹏. 基于微震监测技术的煤矿突水灾害预警方法研究. 能源与节能. 2024(06): 137-139 .
![]() | |
9. |
刘随方. 面向不同时空的煤矿工作面底板微震突水预警方法. 能源与节能. 2024(06): 188-191 .
![]() | |
10. |
周金艳,杨洪增,高杰涛. 煤矿不等长工作面微震事件空间分布特征及其影响因素. 煤田地质与勘探. 2024(06): 128-136 .
![]() | |
11. |
黄刚,韩云春,余国锋,罗勇,任波,叶赞,王立超,赵靖,徐一帆. 全光纤微震监测技术在底板突水监测中的应用研究. 工矿自动化. 2024(06): 36-45 .
![]() | |
12. |
靳晓明. 基于微震监测技术的煤矿底板水害自动预测方法研究. 当代化工研究. 2024(12): 89-91 .
![]() | |
13. |
左建平,吴根水. 深部底板水锤突水效应及递进–导升力学模型研究. 岩石力学与工程学报. 2024(08): 1852-1869 .
![]() | |
14. |
郝宪杰,李航,赵毅鑫,杨怀翔,杨波,刘科峰,李宜家. 基于日累积微震指标与水位关联效应的底板突水预警方法与应用. 岩石力学与工程学报. 2024(09): 2125-2139 .
![]() | |
15. |
刘睿,杨波,尚斌. 基于微震监测的重复采动煤层潜在导水通道形成规律研究. 煤炭与化工. 2024(08): 56-61 .
![]() | |
16. |
韩云春,党保全,尹少波,黄刚,朱文,贺世芳,程庆和,余国锋,任波. 基于光纤微震监测的底板破坏时空演化规律研究. 煤炭技术. 2024(10): 174-177 .
![]() | |
17. |
宋子琦,王来斌,葛志刚. 微震监测在矿井突水预警中的研究进展及展望. 榆林学院学报. 2024(05): 25-31 .
![]() | |
18. |
宗伟琴. 煤矿水害监测预警GIS平台研发及应用. 能源科技. 2024(05): 28-33 .
![]() | |
19. |
芦盛亮,黄磊,徐宁,盖秋凯. 工作面超前采动影响强矿压预测及防控研究. 煤炭技术. 2024(12): 56-61 .
![]() | |
20. |
尚雪义,陈勇,陈结,陈林林,蒲源源. 基于Adaboost_LSTM预测的矿山微震信号降噪方法及应用. 煤炭学报. 2024(11): 4406-4416 .
![]() | |
21. |
邬建宏,潘俊锋,冯美华,陆闯,高家明,闫耀东,马宏源. 顶板不同区域压裂程度覆岩采动响应特征. 煤炭学报. 2024(11): 4351-4364 .
![]() | |
22. |
武强,郭小铭,边凯,杜鑫,许珂,卜文扬,曾一凡. 开展水害致灾因素普查 防范煤矿水害事故发生. 中国煤炭. 2023(01): 3-15 .
![]() | |
23. |
许延春,苗葳,宛志红,叶精灵,李磊,邢晁瑞. 底板加固改造工作面“双关键层”控水模型. 煤矿安全. 2023(05): 63-71 .
![]() | |
24. |
杨光跃,高刚. 平禹一矿水害微震监测系统的建立及应用. 煤炭与化工. 2023(06): 51-54 .
![]() | |
25. |
邱浩,李宏杰,李文,李江华,杜明泽,姜鹏. 煤矿水害智能预警系统关键架构及模型研究. 煤炭科学技术. 2023(07): 197-206 .
![]() | |
26. |
宛志红,郑顺元,李磊,郭前坤,刘峥,苗葳,许延春. 焦作矿区薄基岩厚松散层工作面微震响应特征. 采矿与岩层控制工程学报. 2023(05): 63-72 .
![]() | |
27. |
赵扬锋,丁玲,刘玉春,李兵. 循环荷载作用下煤岩电荷感应与微震信号变化规律. 水资源与水工程学报. 2023(05): 172-182 .
![]() | |
28. |
李杨杨,郑丹,张士川,靳圣佳,李宗凯,李铭松. 双向均压数显相似材料试件制备装置的研制与应用. 矿业研究与开发. 2023(12): 178-184 .
![]() | |
29. |
李倩雯,申建军,张会德,上官泽誉. 薄基岩区覆岩采动破坏特征与控水控砂性能评价. 煤炭科学技术. 2023(S2): 200-209 .
![]() |