Advance Search
WANG Haijun,WANG Honglei. Status and prospect of intelligent key technologies of belt conveyor[J]. Coal Science and Technology,2022,50(12):225−239. DOI: 10.13199/j.cnki.cst.2022-1243
Citation: WANG Haijun,WANG Honglei. Status and prospect of intelligent key technologies of belt conveyor[J]. Coal Science and Technology,2022,50(12):225−239. DOI: 10.13199/j.cnki.cst.2022-1243

Status and prospect of intelligent key technologies of belt conveyor

Funds: 

Key Funding Project for Science and Technology Innovation of China Coal Science and Industry Corporation (2020-2-TD-ZD002, 2020-2-TD-ZD001)

More Information
  • Received Date: July 31, 2022
  • Accepted Date: July 31, 2022
  • Available Online: March 08, 2023
  • As the key equipment of the coal transportation system, the intelligence of the belt conveyor is crucial to the safe and efficient transportation of coal mines. And it is of great significance to improve the safety level of coal mines and ensure a stable supply of coal. Driven by the new technological revolution, the field of belt conveyor intelligence is in the stage of accelerated development. Key intelligent technologies such as information system platforms, intelligent control, measurement and sensing have made continuous progress, showing a trend of multi-point breakthroughs and all-around development. However, the relevant technologies are mostly applied experimentally in coal mining enterprises and have not been widely promoted. This paper reviews the research and development trend of key technologies for intelligent belt conveyors in recent years and summarizes the problems encountered in engineering applications. First, the authors give an overview of the development of belt conveyor intellectualization, focusing on the technical characteristics of belt conveyors with different carrying types and the technical requirements for intelligent development. Then, the key technical problems that need to be solved for idler belt conveyor intelligence are pointed out. The current research status of four key directions, such as energy saving technology of belt conveyors, coal flow sensing technology, health status monitoring technology, and safety assurance technology, is introduced. The article analyzes the application of computer vision, big data analysis, intelligent control, and decision-making technologies in engineering, and discusses the existing problems and future development trends. Finally, the development suggestions for belt conveyors are proposed from the perspective of intelligent monitoring and control research, combined with the analysis of related technology research results at home and abroad. The future research directions of intelligent key technologies such as non-contact coal flow intelligent sensing of belt conveyors, transparent conveying based on multi-source information fusion, frequency conversion and energy-saving control, and virtual reality are discussed.

  • [1]
    杨兰峰. 国内外带式输送机的现状及发展趋势[J]. 机械管理开发,2016,31(4):119−120. doi: 10.16525/j.cnki.cn14-1134/th.2016.04.46

    YANG Lanfeng. Development trend and status of belt conveyor[J]. Mechanical Management and Development,2016,31(4):119−120. doi: 10.16525/j.cnki.cn14-1134/th.2016.04.46
    [2]
    郝喜军. 带式输送机节能降耗控制方法研究[J]. 山西焦煤科技,2015(4):19−21.

    HAO Xijun. Study on control method of energy saving and reducing consumption of belt conveyor[J]. Shanxi Coking Coal Science & Technology,2015(4):19−21.
    [3]
    孟敏瑜. 无托辊带式输送机的研究进展[J]. 煤炭科学技术,1999,27(8):36−39. doi: 10.3969/j.issn.0253-2336.1999.08.013

    MENG Minyu. Research progress of belt conveyor without idler[J]. Coal Science And Technology,1999,27(8):36−39. doi: 10.3969/j.issn.0253-2336.1999.08.013
    [4]
    JONKERS C O,曹秉忠. 输送机胶带利用气膜代替托辊−空气带式输送机可供选择[J]. 起重运输机械,1974(6):62−67.

    JONKERS C O,CAO Bingzhong. Conveyor belt uses air film instead of idler-air belt conveyor is optional[J]. Lifting the transport machinery,1974(6):62−67.
    [5]
    秦浩然. 分布式气垫带式输送机关键技术研究[D]. 太原: 太原科技大学, 2020.

    QIN Haoran. Research on key technology of distributed air cushion belt conveyor[D]. Taiyuan:Taiyuan University of Science and Technology, 2020.
    [6]
    余建山. 气垫带式输送机的发展与应用[J]. 中国铸造装备与技术, 1996(6): 10-13.

    YU Jianshan. Development and application of air-cushion conveyor[J].China Foundry Machinery & Technology, 1996(6): 10-13.
    [7]
    宋伟刚,彭兆行. 气垫带式输送机的设计与计算(Ⅰ)──气垫带式输送机的发展概况、种类及特点[J]. 矿山机械,1994(6):12−15.

    SONG Weigang,PENG Zhaoxing. Design and calculation of air cushion belt conveyor(i)—development, types and characteristics of air cushion belt conveyor[J]. Mining & Processing Equipment,1994(6):12−15.
    [8]
    庞明军,张锁龙. 气垫带式输送机气垫压力场研究与数值模拟[J]. 起重运输机械,2006(3):59−62.

    PANG Mingjun,ZHANG Suolong. Research and numerical simulation of air cushion pressure field of air cushion belt conveyor[J]. Lifting the transport machinery,2006(3):59−62.
    [9]
    LIU X W,WANG J S,WU L T,et al. Study on water cushion belt conveyor[J]. Advanced Materials Research,2014,1016:14−18. doi: 10.4028/www.scientific.net/AMR.1016.14
    [10]
    ZHANG C . Design of belt conveyor control system based on motion controller[C]// 2014 International Conference on Energy Science and Applied Technology Daqing: Applied Mechanics and Materials, 2014: 710–713.
    [11]
    张爱东. 水垫带式输送机关键技术研究[D]. 北京: 中国矿业大学(北京), 2014.

    ZHANG Aidong. Study on the key techniques of water cushion belt conveyor[D]. Beijing: China University of Mining and Technology-Beijing, 2014.
    [12]
    范 迅,刘宪伟,郑 侠,等. 水垫带式输送机设计原理及基本参数的研究[J]. 中国矿业大学学报,2006(5):581−585. doi: 10.3321/j.issn:1000-1964.2006.05.004

    FAN Xun,LIU Xianwei,ZHENG Xia,et al. Research on design theory and basic parameters of a water cushion belt conveyor[J]. Journal of China University of Mining & Technology,2006(5):581−585. doi: 10.3321/j.issn:1000-1964.2006.05.004
    [13]
    刘文旭,李文龙,方 进. 高温超导磁悬浮技术研究论述[J]. 低温与超导,2020,48(2):48−53. doi: 10.16711/j.1001-7100.2020.02.009

    LIU Wenxu,LI Wenlong,FANG Jin. Review of research on high temperature maglev[J]. Cryogenics & Superconductivity,2020,48(2):48−53. doi: 10.16711/j.1001-7100.2020.02.009
    [14]
    陈 殷, 李耀华, 李 艳. 板式双边永磁电动悬浮三维解析计算[J]. 铁道工程学报, 2019, 36(12): 31-36.

    CHEN Yin, LI Yaohua, LI Yan, Three-dimensional analytical calculation of plate-type double permanent magnet electrodynamic suspension[J]. Journal of Railway Engineering Society, 2019, 36(12): 31-36.
    [15]
    胡 坤, 季晨光, 蒋 浩, 等. 磁悬浮带式输送机新型敛磁式混合磁体设计与试验研究[J]. 煤炭学报, 2021, 46(S1): 558-569.

    HU Kun, JI Chenguang, JIANG Hao, et al. Design and experimental research on a new type of convergent hybrid magnet for magnetic levitation belt conveyor[J]. Journal of China Coal Society, 2021, 46(S1): 558-569.
    [16]
    胡 坤,王 爽,郭永存,等. 永磁悬浮带式输送机侧向力与跑偏仿真分析[J]. 系统仿真学报,2016,28(5):1173−1178. doi: 10.16182/j.cnki.joss.2016.05.023

    HU Kun,WANG Shuang,GUO Yongcun,et al. Analysis of lateral force and deviation of permanent magnetic levitation belt conveyor[J]. Journal of System Simulation,2016,28(5):1173−1178. doi: 10.16182/j.cnki.joss.2016.05.023
    [17]
    潘 泽. 磁电混合悬浮带式输送机输送带变形特性研究[D]. 淮南: 安徽理工大学, 2020.

    PAN Ze. Study on the deformation characteristics of the conveyor belt of the magnetoelectric hybrid suspension belt conveyor[D]. Huainan: Anhui University of Science and Technology, 2020.
    [18]
    刘宝军. 矿井带式输送机能耗优化控制系统研究[D]. 西安: 西安科技大学, 2020.

    LIU Baojun. Research on energy consumption optimization control system of mine belt conveyor[D]. Xi’an : Xi’an University of Science and Technology, 2020.
    [19]
    孙汪萍. 长距离带式输送机节能优化策略的研究[D]. 合肥: 合肥工业大学, 2015.

    SUN Wangping. Studies of long distance belt conveyor and energy saving optimization strategy[D]. Hefei: Hefei University of Technology, 2015
    [20]
    石志勇. 三相异步电动机Y/△降压启动的分析与改进[J]. 职业, 2012(26): 95-96.

    SHI Zhiyong. Analysis and improvement of Y/△ step-down starting of three-phase asynchronous motor[J], Occupation, 2012(26): 95-96.
    [21]
    胡翠云,胡海英,赵 欣. Y/△降压启动与△/YY变极调速接法比较[J]. 科技资讯,2008(36):90. doi: 10.3969/j.issn.1672-3791.2008.36.075

    HU Cuiyun,HU Haiying,ZHAO Xin. Comparison between Y/△ step-down start and △/YY pole changing speed regulation connection[J]. Science & Technology Information,2008(36):90. doi: 10.3969/j.issn.1672-3791.2008.36.075
    [22]
    冯俊宾. 变频调速技术在带式输送机上的节能应用[J]. 机械研究与应用,2021,34(1):142−144. doi: 10.16576/j.cnki.1007-4414.2021.01.044

    FENG Junbin. Energy Saving application of frequency control technology in belt conveyor[J]. Mechanical Research & Application,2021,34(1):142−144. doi: 10.16576/j.cnki.1007-4414.2021.01.044
    [23]
    邢宇峰,孙虎儿. 选煤厂带式输送机节能技术研究与实践[J]. 煤矿机械,2009,30(6):59−60. doi: 10.3969/j.issn.1003-0794.2009.06.026

    XING Yufeng,SUN Huer. Research and practice of belt conveyor energy-saving technology about coal preparation plant[J]. Coal Mine Machinery,2009,30(6):59−60. doi: 10.3969/j.issn.1003-0794.2009.06.026
    [24]
    孙 伟,王 慧,杨海群. 带式输送机变频调速节能控制系统研究[J]. 工矿自动化,2013,39(4):98−101. doi: 10.7526/j.issn.1671-251X.2013.04.027

    SUN Wei,WANG Hui,YANG Haiqun. Research of energy-saving control system with frequency-conversion speed-regulation for belt conveyor[J]. Industry and Mine Automation,2013,39(4):98−101. doi: 10.7526/j.issn.1671-251X.2013.04.027
    [25]
    苟学亮. 变频调速节能控制技术在带式输送机上的应用[D]. 西安: 西安科技大学, 2019.

    GOU Xueliang. Application of variable frequency speed and energy-saving control technology in belt conveyor[D]. Xi’an: Xi’an University of Science and Technology, 2019.
    [26]
    方原柏. 皮带秤系统试验装置发展四十年回顾[J]. 衡器,2021,50(8):42−51. doi: 10.3969/j.issn.1003-5729.2021.08.011

    FANG Yuanbai. Review of 40 years development of belt weigher system test device[J]. Weighing Instrument,2021,50(8):42−51. doi: 10.3969/j.issn.1003-5729.2021.08.011
    [27]
    马 辉. 电子皮带秤计量、校准及误差分析[J]. 衡器,2019,48(1):11−13.

    MA Hui. The measurement accuracy and error analysis of electronic belt scale[J]. Weighing Instrument,2019,48(1):11−13.
    [28]
    厉 达,何福胜. 皮带秤技术现状及发展趋势[J]. 衡器,2012,41(9):1−4,10. doi: 10.3969/j.issn.1003-5729.2012.09.001

    LI Da,HE Fusheng. Technical status and development trend of belt weigher[J]. Weighing Instrument,2012,41(9):1−4,10. doi: 10.3969/j.issn.1003-5729.2012.09.001
    [29]
    李 萍,王彦文. 煤炭在线动态称重系统研究[J]. 工矿自动化,2013,39(12):29−33. doi: 10.7526/j.issn.1671-251X.2013.12.008

    LI Ping,WANG Yanwen. Research of online dynamic weighting system of coal[J]. Industry and Mine Automation,2013,39(12):29−33. doi: 10.7526/j.issn.1671-251X.2013.12.008
    [30]
    顾世双. 核子皮带秤和电子皮带秤的比较[J]. 衡器,2011,40(6):49−50,54. doi: 10.3969/j.issn.1003-5729.2011.06.018

    GU Shishuang. Comparison between nuclear belt scale and electronic belt scale[J]. Weighing Instrument,2011,40(6):49−50,54. doi: 10.3969/j.issn.1003-5729.2011.06.018
    [31]
    关西锋. 新型电子皮带秤和微机核子秤在钼原矿计量的应用[J]. 衡器,2013,42(10):12−16. doi: 10.3969/j.issn.1003-5729.2013.10.003

    GUAN Xifeng. The utilization of new electronic belt scale and micro computerized nuclear scale when measuring the molybdenum ore[J]. Weighing Instrument,2013,42(10):12−16. doi: 10.3969/j.issn.1003-5729.2013.10.003
    [32]
    苏 毅. 可实现物料流量精确控制的自动核子皮带秤[J]. 中国测试,2012,38(6):57−59,63.

    SU Yi. Automatic nucleonic belt weigher with function of precise material-flow control[J]. China Measurement & Test,2012,38(6):57−59,63.
    [33]
    肖志红. 超声皮带秤测量系统的实现[J]. 现代电子技术,2006(20):160−162. doi: 10.3969/j.issn.1004-373X.2006.20.057

    XIAO Zhihong. Realization of measuring system with ultrasonic belt scale[J]. Modern Electronics Technique,2006(20):160−162. doi: 10.3969/j.issn.1004-373X.2006.20.057
    [34]
    曾 飞. 带式输送机物料瞬时流量激光测量方法[J]. 湖南大学学报(自然科学版),2015(2):40−47. doi: 10.16339/j.cnki.hdxbzkb.2015.02.007

    ZENG Fei. Measurement of material instantaneous flow on belt conveyors based on laser scanning[J]. Journal of Hunan University(Natural Sciences),2015(2):40−47. doi: 10.16339/j.cnki.hdxbzkb.2015.02.007
    [35]
    陈湘源. 基于超声波的带式输送机多点煤流量监测系统设计[J]. 工矿自动化,2017,43(2):75−87. doi: 10.13272/j.issn.1671-251x.2017.02.016

    CHEN Xiangyuan. Design of multipoint coal flow monitoring system of belt conveyor based on ultrasonic[J]. Industry and Mine Automation,2017,43(2):75−87. doi: 10.13272/j.issn.1671-251x.2017.02.016
    [36]
    张少宾. 基于实况负载的带式输送机智能控制研究[D]. 北京: 煤炭科学研究总院, 2019.

    ZHANG Shaobin. Control research of belt conveyor intelligence based on live load[D]. Beijing: China Coal Research Institute, 2019.
    [37]
    VIEROSLAV M,KATARÍNA L. Design of clamping structure for material flow monitor of pipe conveyors[J]. Open Engineering,2019,9(1):586−592. doi: 10.1515/eng-2019-0068
    [38]
    孟凡芹,王耀才. 煤矿井下带式输送机煤流图像识别方法的研究[J]. 煤炭学报,2003(1):91−95. doi: 10.3321/j.issn:0253-9993.2003.01.019

    MENG Fanqing,WANG Yaocai. Study of the methods for recognizing the coal flow image of coal mine’s conveyer belt[J]. Journal of China Coal Society,2003(1):91−95. doi: 10.3321/j.issn:0253-9993.2003.01.019
    [39]
    北京广天夏科技有限公司. 基于图像识别的井下煤流量检测方法[P]. 中国: ZL108664874, 2018-10-16.
    [40]
    李 瑶, 王义涵. 带式输送机煤流量自适应检测方法. 工矿自动化, 2020,46(6): 98-102.

    LI Yao, WANG Yihan. Adaptive coal flow detection method of belt conveyor[J]. Industry and Mine Automation, 2020,46(6): 98-102.
    [41]
    冯 媛. 融合感知的带式输送机煤流量监控系统[D]. 淮南: 安徽理工大学, 2020.

    FENG Yuan. Coal flow monitoring system of belt conveyor with integrated perception[D]. Huainan: Anhui University of Science and Technology , 2020.
    [42]
    高如新,王俊孟. 基于双目立体视觉的煤体积测量[J]. 计算机系统应用,2014,23(5):126−133. doi: 10.3969/j.issn.1003-3254.2014.05.023

    GAO Ruxing,WANG Junmeng. Volume measurement of coal based on binocular stereo vision[J]. Computer Systems & Applications,2014,23(5):126−133. doi: 10.3969/j.issn.1003-3254.2014.05.023
    [43]
    代 伟,赵 杰,杨春雨,等. 基于双目视觉深度感知的带式输送机煤量检测方法[J]. 煤炭学报,2017,42(S2):547−555. doi: 10.13225/j.cnki.jccs.2017.0389

    DAI Wei,ZHANG Jie,YANG Chunyu,et al. Detection method of coal quantity in belt conveyor based on binocular vision depth perception[J]. Journal of China Coal Society,2017,42(S2):547−555. doi: 10.13225/j.cnki.jccs.2017.0389
    [44]
    杨春雨,顾 振,张 鑫,等. 基于深度学习的带式输送机煤流量双目视觉测量[J]. 仪器仪表学报,2021,41(8):164−174.

    YANG Chunyu,et al. Binocular vision measurement of coal flow of belt conveyors based on deep learning[J]. Chinese Journal of Scientific Instrument,2021,41(8):164−174.
    [45]
    李玥华,周京博,刘利剑. 线结构光测量技术研究进展[J]. 河北科技大学学报,2018,39(2):115−124. doi: 10.7535/hbkd.2018yx02004

    LI Yuehua,ZHOU Jingbo,LIU Lijian. Research progress of the line structured light measurement technique[J]. Journal of Hebei University of Science and Technology,2018,39(2):115−124. doi: 10.7535/hbkd.2018yx02004
    [46]
    李 萍,王彦文. 煤炭计量计质信息系统研究[J]. 工矿自动化,2014,40(6):11−13. doi: 10.13272/j.issn.1671-251x.2014.06.003

    LI Ping,WANG Yanwen. Research of information system for coal weight measurement and quality analysis[J]. Industry and Mine Automation,2014,40(6):11−13. doi: 10.13272/j.issn.1671-251x.2014.06.003
    [47]
    郭伟东,李 明,亢俊明,等. 基于机器视觉的矿井输煤系统优化节能控制[J]. 工矿自动化,2020,46(10):69−75. doi: 10.13272/j.issn.1671-251x.17625

    GUO Weidong,LI Ming,KANG Junming,et al. Optimal energy saving control of mine coal transportation system based on machine vision[J]. Industry and Mine Automation,2020,46(10):69−75. doi: 10.13272/j.issn.1671-251x.17625
    [48]
    LI Jiacheng, WANG Honglei, ZHANG Junsheng, et al. Coal flow volume measurement of belt conveyor based on binocular vision and line structured light[C]//IEEE International Conference on Electrical Engineering and Mechatronics Technology, 2021.
    [49]
    蒋卫良,王兴茹,刘 冰,等. 煤矿智能化连续运输系统关键技术研究[J]. 煤炭科学技术,2020,48(7):134−142.

    JIANG Weiliang,WANG Xingru,LIU Bing,et al. Study on key technology of coal mine intelligent continuous transportation[J]. Coal Science and Technology,2020,48(7):134−142.
    [50]
    葛世荣,郝尚清,张世洪,等. 我国智能化采煤技术现状及待突破关键技术[J]. 煤炭科学技术,2020,48(7):28−46. doi: 10.13199/j.cnki.cst.2020.07.002

    GE Shirong,HAO Shangqing,ZHANG Shihong,et al. Status of intelligent coal mining technology and potential key technologies in China[J]. Coal Science and Technology,2020,48(7):28−46. doi: 10.13199/j.cnki.cst.2020.07.002
    [51]
    郭启皇,乔铁柱. 基于Otsu算法的输送带撕裂视觉检测系统研究[J]. 煤炭技术,2017,36(4):279−282. doi: 10.13301/j.cnki.ct.2017.04.102

    GUO Qihuang,QIAO Tiezhu. Research of conveyor belt tear vision detection system based on Otsu algorithm[J]. Coal Technology,2017,36(4):279−282. doi: 10.13301/j.cnki.ct.2017.04.102
    [52]
    刘伟力,乔铁柱. 矿用输送带纵向撕裂检测系统研究[J]. 工矿自动化,2017,43(2):78−81. doi: 10.13272/j.issn.1671-251x.2017.02.017

    LIU Weili,QIAO Tiezhu. Research on longitudinal tearing detection system of mine-used conveyor belt[J]. Industry and Mine Automation,2017,43(2):78−81. doi: 10.13272/j.issn.1671-251x.2017.02.017
    [53]
    刘晓阳,刘 晶,张向阳,等. 基于二维Gabor滤波器的胶带撕裂检测[J]. 工矿自动化,2021,47(4):103−107. doi: 10.13272/j.issn.1671-251x.2020110045

    LIU Xiaoyang,LIU Jing,ZHANG Xiangyang,et al. Two-dimensional Gabor filter-based belt tear detection[J]. Industry and Mine Automation,2021,47(4):103−107. doi: 10.13272/j.issn.1671-251x.2020110045
    [54]
    ZHANG Mengchao,ZHANG Yuan,ZHOU Manshan,et al. Application of lightweight convolutional neural network for damage detection of conveyor belt[J]. Applied Sciences,2021,11(16):7282. doi: 10.3390/app11167282
    [55]
    李现国, 苗长云, 杨彦利, 等. 一种基于线激光图像的输送带纵向撕裂在线检测方法[P]. 中国: ZL106276132A, 2017-01-04.
    [56]
    LYU Zhiwei,ZHANG Xiaoguang,HU Jiangdi,et al. Visual detection method based on line lasers for the detection of longitudinal tears in conveyor belts[J]. Measurement,2021:183. doi: 10.1016/J.MEASUREMENT.2021.109800
    [57]
    李现国,明紫旭,苗 笛,等. 基于线激光和ARM的输送带纵向撕裂监控系统设计[J]. 煤炭科学技术,2017,45(2):146−150. doi: 10.13199/j.cnki.cst.2017.02.024

    LI Xianguo,MING Zixu,MIAO Di,et al. Design on monitoring and control system of conveyor belt longitudinal tearing based on line laser and ARM[J]. Coal Science and Technology,2017,45(2):146−150. doi: 10.13199/j.cnki.cst.2017.02.024
    [58]
    徐 辉,刘丽静,沈 科,等. 基于多道线性激光的带式输送机纵向撕裂检测[J]. 工矿自动化,2021,47(7):37−44. doi: 10.13272/j.issn.1671-251x.17681

    XU Hui,LIU Lijing,SHEN Ke,et al. Longitudinal tear detection of belt conveyor based on multi linear lasers[J]. Industry and Mine Automation,2021,47(7):37−44. doi: 10.13272/j.issn.1671-251x.17681
    [59]
    马永兵. 基于PLC的煤矿带式输送机监控系统设计与探讨[J]. 江西煤炭科技,2020(1):51−53.

    MA Yongbing. Discussion on Design of belt conveyor monitoring system based on PLC in coal mine[J]. Jiangxi Coal Science & Technology,2020(1):51−53.
    [60]
    杨彦利, 苗长云, 亢 伉, 等. 输送带跑偏故障的机器视觉检测技术[J]. 中北大学学报(自然科学版), 2012, 33(6): 667-671.

    YANG Yanli, MIAO Changyun, KANG Kang, et al. Machine vision inspection technique for conveyor belt deviation[J]. Journal of North University of China(Natural Science Edition), 2012, 33(6): 667-671.
    [61]
    王 磊,张 磊,董 妍,等. 基于FPGA的输送带跑偏检测系统设计[J]. 煤矿机械,2019,40(7):27−30.

    WANG Lei,ZHANG Lei,DONG Yan,et al. Design of conveyor belt deviation detection system based on FPGA[J]. Coal Mine Machinery,2019,40(7):27−30.
    [62]
    王 平. 基于数字图像处理的输送带跑偏状态实时监测技术[J]. 煤矿机械,2021,42(2):168−170. doi: 10.13436/j.mkjx.202102054

    WANG Ping. Real-time monitoring technology of conveyor belt deviation state based on digital image processing[J]. Coal Mine Machinery,2021,42(2):168−170. doi: 10.13436/j.mkjx.202102054
    [63]
    韩 涛, 黄友锐, 张立志, 等. 基于图像识别的带式输送机输煤量和跑偏检测方法[J]. 工矿自动化, 2020, 46(4): 17-22.

    HAN Tao, HUANG Yourui, ZHANG Lizhi, et al. Detection method of coal quantity and deviation of belt conveyor based on image recognition[J]. Industry and Mine Automation, 2020, 46(4): 17-22.
    [64]
    姜阔胜, 毛中元, 谢有浩, 等. 矿用带式输送机托辊运行状态监测系统[J]. 工矿自动化, 2021, 47(7): 45-49.

    JIANG Kuosheng, MAO Zhongyuan, XIE Youhao, et al. Mine belt conveyor roller operation condition monitoring system[J]. Industry and Mine Automation, 2021, 47(7): 45-49.
    [65]
    郝洪涛, 倪凡凡, 陈 亮, 等. 远程带式输送机托辊故障巡检方法[J]. 煤矿机械, 2018, 39(11): 133-135.

    HAO Hongtao, NI Fanfan, CHEN Liang, et al. Investigation of inspection method on roller of remote belt conveyor[J]. Coal Mine Machinery, 2018, 39(11): 133-135.
    [66]
    苏 辉, 牛蔺楷, 张 琨. 基于ZigBee无线传感网络的托辊卡死故障监测系统设计[J]. 煤炭工程, 2018, 50(7): 14-17.

    SU Hui, NIU Linkai, ZHANG Kun. Design of roller fault monitoring system based on ZigBee wireless sensor network[J]. Coal Engineering, 2018, 50(7): 14-17.
    [67]
    朱 振. 带式输送机托辊运行状态在线巡检机器人关键技术研究[D]. 阜新: 辽宁工程技术大学, 2020.

    ZHU Zhen. Research on the key technology of on-line inspection robot for the running state of belt conveyor roller[D].Fuxin: Liaoning Technical University, 2020.
    [68]
    马宏伟, 杨文娟, 张旭辉. 基于红外热像的带式输送机监测与预警系统[J]. 激光与红外, 2017, 47(4): 448-452.

    MA Hongwei, YANG Wenjuan, ZHANG Xuhui. Monitoring and warning system of belt conveyor based on infrared thermography[J].Laser & Infrared, 2017, 47(4): 448-452.
    [69]
    刘宇琦. 基于深度学习的托辊异常检测方法研究[D]. 西安: 西安科技大学, 2020.

    LIU Yuqi. Research on abnormal detection method of idler based on deep learning[D].Xi’an: Xi’an University of Science and Technology, 2020.
    [70]
    任晓力. 防止输送带打滑的新方法[J]. 煤炭技术, 2020, 39(1): 181-183.

    REN Xiaoli. New method to prevent slipping of conveyor belt[J]. Coal Technology, 2020, 39(1): 181-183.
    [71]
    武林海. 带式输送机常见故障检测及防治系统研究[J]. 煤矿机械, 2019, 40(2): 145-147.

    WU Linhai. Research on common fault detection and prevention system of belt conveyor[J]. Coal Mine Machinery, 2019, 40(2): 145-147.
    [72]
    刘晓宁. 变频技术在皮带运输机调速系统中的应用标准[J]. 中国石油和化工标准与质量, 2021, 41(5): 164-166.

    LIU Xiaoning. Application standard of frequency conversion technology in belt conveyor speed regulation system [J]. China Petroleum and Chemical Standard and Quality, 2021, 41(5): 164-166.
    [73]
    KUMAR C H V,MURTHY CH S N,et al. Noise Assessment in Mines – A Critical Review[J]. Concurrent Advances in Mechanical Engineering,2016,2(1):6−11. doi: 10.18831/came/2016011002
    [74]
    朱志明. 变频技术在皮带机调速系统中的应用[J]. 石化技术,2019,26(12):35−36. doi: 10.3969/j.issn.1006-0235.2019.12.022

    ZHU Zhiming. Application of frequency conversion technology in belt conveyor speed regulation system[J]. Petrochemical Industry Technology,2019,26(12):35−36. doi: 10.3969/j.issn.1006-0235.2019.12.022
    [75]
    周利东,贾志鹏,白纯刚,等. 托辊噪声机理分析及降噪方法[J]. 煤矿机械,2021,42(4):80−83. doi: 10.13436/j.mkjx.202104025

    ZHOU Lidong,JIA Zhipeng,BAI Chungang,et al. Mechanism analysis and noise reduction method of idler[J]. Coal Mine Machinery,2021,42(4):80−83. doi: 10.13436/j.mkjx.202104025
    [76]
    米 雨,倪永帅,温日正. 基于不同材料的低噪声托辊对带式输送机噪声的影响及分析[J]. 起重运输机械,2021,14:66−68.

    MI Yu,NI Yongshuai,WEN Rizheng. Influence and analysis of low noise idler based on different materials on belt conveyor noise[J]. Hoisting and Conveying Machinery,2021,14:66−68.
    [77]
    PATRA A. K, GAUTAM S, KUMAR P. Emissions and human health impact of particulate matter from surface mining operation - a review[J]. Environmental Technology & Innovation,2016,5:233−249.
    [78]
    张 晨. 关于皮带落煤转载除尘装置研究[J]. 石化技术,2020,27(1):270−272. doi: 10.3969/j.issn.1006-0235.2020.01.170

    ZHANG Chen. Research on belt coal falling transfer dust removal device[J]. Petrochemical Industry Technology,2020,27(1):270−272. doi: 10.3969/j.issn.1006-0235.2020.01.170
    [79]
    刘志斌. 矿山井下巷道除尘系统构建与改造[J]. 中国新技术新产品,2021,10:79−81. doi: 10.13612/j.cnki.cntp.2021.10.025

    LIU Zhibin. Construction and transformation of mine underground roadway dust removal system[J]. Chinese Selected New Technologies and Products,2021,10:79−81. doi: 10.13612/j.cnki.cntp.2021.10.025
    [80]
    李跃飞. 洗煤厂皮带运输机中抑尘罩的设计和使用[J]. 现代国企研究,2019,10:146−147.

    LI Yuefei. Design and application of dust suppression cover in belt conveyor in coal washing plant[J]. Modern SOE Research,2019,10:146−147.
    [81]
    郁 洋. 探讨选煤厂输煤系统粉尘的治理[J]. 江西煤炭科技,2018,4:122−124.

    YU Yang. Discussion on dust control in coal handling system of coal preparation plant[J]. Jiangxi Coal Science & Technology,2018,4:122−124.
    [82]
    魏德宁,荆德吉,齐庆杰,等. 皮带运输巷粉尘运移规律实验研究[J]. 辽宁工程技术大学学报(自然科学版),2020,39(6):503−508. doi: 10.11956/j.issn.1008-0562.2020.06.005

    WEI Dening,JING Deji,Qi Qingjie,et al. Experimental study on dust transport law in belt transportation roadway[J]. Journal of Liaoning Technical University (natural science edition),2020,39(6):503−508. doi: 10.11956/j.issn.1008-0562.2020.06.005
    [83]
    程永新. 煤矿带式输送机火灾光纤传感检测技术研究[J]. 煤炭科学技术,2019,47(2):131−135. doi: 10.13199/j.cnki.cst.2019.02.022

    CHENG Yongxin. Research on fire optical fiber sensing detection technology of coal mine belt conveyor[J]. Coal Science and Technology,2019,47(2):131−135. doi: 10.13199/j.cnki.cst.2019.02.022
    [84]
    上官昌培. 皮带巷火灾数值模拟与人员疏散[J]. 煤炭与化工,2021,44(1):116−120. doi: 10.19286/j.cnki.cci.2021.01.031

    SHANGGUAN Changpei. Numerical simulation of belt lane fire and personnel evacuation[J]. Coal and Chemical Industry,2021,44(1):116−120. doi: 10.19286/j.cnki.cci.2021.01.031
    [85]
    郝海清,王 凯,张春玉,等. 矿井皮带巷火灾风烟流场-区-网演化与调控规律[J]. 中国矿业大学学报,2021,50(4):716−724. doi: 10.13247/j.cnki.jcumt.001315

    HAO Haiqing,WANG Kai,ZHANG Chunyu,et al. Smoke flow field area network evolution and regulation law of mine belt roadway fire[J]. Journal of China University of Mining & Technology,2021,50(4):716−724. doi: 10.13247/j.cnki.jcumt.001315
    [86]
    张燕宁. 矿井主运输皮带巷自动灭火报警技术研究应用[J]. 能源与节能,2021(1):210−211. doi: 10.3969/j.issn.2095-0802.2021.01.087

    ZHANG Yanning. Research and application of automatic fire extinguishing alarm technology in mine main transportation belt roadway[J]. Energy and Energy Conservation,2021(1):210−211. doi: 10.3969/j.issn.2095-0802.2021.01.087
    [87]
    苏 墨. 矿井胶带火灾灾变规律数值模拟及自动灭火系统设计研究[D]. 太原: 太原理工大学, 2017.

    SU Mo. Numerical simulation of mine belt fire disaster law and design of automatic fire extinguishing System [D]. Taiyuan: Taiyuan University of Technology, 2017.
    [88]
    王海军, 刘少权, 王洪磊, 等. 一种煤炭职业病防护智能穿戴装备[P]. 中国: ZL211659100U, 2020-01-20.
    [89]
    穆中礼. 大型皮带运输设备安全运行维护及管理[J]. 中国金属通报,2021,7:59−60. doi: 10.3969/j.issn.1672-1667.2021.01.028

    MU Zhongli. Safe operation, maintenance and management of large belt transportation equipment[J]. China Metal Bulletin,2021,7:59−60. doi: 10.3969/j.issn.1672-1667.2021.01.028
  • Cited by

    Periodical cited type(7)

    1. 刘亚明. 煤矿长距离供电情形及其最远供电距离的极限分析与应用. 山东煤炭科技. 2025(05)
    2. 赵继云,曹超,王浩,泮延召,黄笛,韩静,苗运江. 液压支架大功率供液系统的现状与智能化发展趋势. 煤炭学报. 2025(01): 676-693 .
    3. 刘波. 煤矿井下水力压裂自动控制系统设计. 工矿自动化. 2024(03): 6-13 .
    4. 吴早阳,赖岳华,李丹宁,西成峰,杨程锦. 煤矿泵站实时在线监测与故障预警诊断系统研究. 煤炭技术. 2024(05): 284-287 .
    5. 张占东,陈吉顺,李珂,赵文超,韦春辉. 液压支架动作过程用液需求分析. 机床与液压. 2024(22): 199-206 .
    6. 王国法,张良,李首滨,李森,冯银辉,孟令宇,南柄飞,杜明,付振,李然,王峰,刘清,王丹丹. 煤矿无人化智能开采系统理论与技术研发进展. 煤炭学报. 2023(01): 34-53 .
    7. 刘伟. 基于机电液联合的液压支架智能供液系统压力波动特性研究. 自动化应用. 2023(17): 206-208 .

    Other cited types(1)

Catalog

    Article views PDF downloads Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return