Advance Search

ZHANG Wenquan,ZHU Xianxiang,LI Song,et al. Experimental study on performance of rubber-fly ash-based mine floor fissure grouting material[J]. Coal Science and Technology,2023,51(5):1−10

. DOI: 10.13199/j.cnki.cst.2022-1153
Citation:

ZHANG Wenquan,ZHU Xianxiang,LI Song,et al. Experimental study on performance of rubber-fly ash-based mine floor fissure grouting material[J]. Coal Science and Technology,2023,51(5):1−10

. DOI: 10.13199/j.cnki.cst.2022-1153

Experimental study on performance of rubber-fly ash-based mine floor fissure grouting material

Funds: 

National Natural Science Foundation of China (51774199); Major Basic Research Project of Natural Science Foundation of Shandong Province (ZR2018ZC0740)

More Information
  • Received Date: July 18, 2022
  • Available Online: May 12, 2023
  • In response to the current challenges of high water pressure and easy conduction in kilometer deep wells, we propose the “hydrophobic pressure reduction, slurry reinforcement” mine water control technology, which requires slurry materials with “high strength, strong stability, easy flow, low cost” and other properties. “High strength” can be achieved by adding nano-reinforced materials. “Strong stability” can be achieved by preferentially selecting easy-to-consolidate and difficult-to-disperse raw materials and adjusting the mixing conditions. “Stable flow” can be achieved by adjusting the particle size of added raw materials and increasing the interfacial friction. “Low cost” can be achieved by using existing large-scale industrial and mining solid waste products that are in urgent need of treatment, supplemented by a small amount of additives. In view of the above problems, this paper aims at reinforcing the coal seam floor with slurry, and takes the large-scale utilization of industrial and mining wastes as the direction. By using waste tire rubber particles, fly ash and clay as the main materials, supplemented with a small amount of admixtures, the orthogonal test method is used to carry out experimental research on the basic performance of solid waste slurry filling materials. The effects of different rubber particle admixtures and admixtures were analyzed in the paper, and their effects on the flowability, mechanical properties, stability in mine water environment, impermeability and microstructural properties of the grouted stone body were derived. The research results show that when rubber particles are mixed with 20%, fly ash with 65%, clay with 15%, and nano-silica with 1% of solid powder, the flow of the grouted slurry is 293 mm, the 28 d compressive strength of the grouted stone body is 11.7 MPa, and the seepage pressure of the stone body is 0.8 MPa, and the obtained test results can meet the demand of field grouting reinforcement, which is useful for The obtained test results can meet the demand for on-site grouting reinforcement, which has scientific reference value for large-scale bottom slab fracture grouting reinforcement and also provides reference for large-scale utilization of solid waste products.

  • [1]
    张耀辉,熊祖强,李西凡,等. 复杂水文地质条件下矿井水害综合防治技术研究[J]. 煤炭科学技术,2021,49(3):167−174.

    ZHANG Yaohui,XIONG Zuqiang,LI Xifan,et al. Study on technology of mine water disater prevention and control in underground mine under complex hydrogeological conditions[J]. Coal Science and Technology,2021,49(3):167−174.
    [2]
    张党育. 深部开采矿井水害区域治理关键技术研究及发展[J]. 煤炭科学技术,2017,45(8):8−12.

    ZHANG Dangyu. Research and development on key technology of mine water disaster regional control in deep mine[J]. Coal Science and Technology,2017,45(8):8−12.
    [3]
    SHAO Jianli,ZHANG Wenquan,WU Xintao,et al. Rock damage model coupled stress–seepage and its application in water inrush from faults in coal mines[J]. ACS Omega,2022,7(16):13604−13614. doi: 10.1021/acsomega.1c07087
    [4]
    虎维岳,周建军. 煤矿水害防治技术工作中几个易混淆概念的分析[J]. 煤炭科学技术,2017,45(8):60−65. doi: 10.13199/j.cnki.cst.2017.08.011

    HU Weiyue,ZHOU Jianjun. Discussion on some confused key concepts used in mine water disater control and protection[J]. Coal Science and Technology,2017,45(8):60−65. doi: 10.13199/j.cnki.cst.2017.08.011
    [5]
    李 涛,高 颖,张 鹏,等. 深部带压开采黏土基底板注浆材料改性研究[J]. 金属矿山,2019(12):173−177.

    LI Tao,GAO Ying,ZHANG Peng,et al. Study on Modification of Grouting Material with Clay-based Plate in Deep Mining under Pressure[J]. Metal Mine,2019(12):173−177.
    [6]
    金 青,王艺霖,崔新壮,等. 拉拔作用下土工合成材料在风化料-废弃轮胎橡胶颗粒轻质土中的变形行为研究[J]. 岩土力学,2020,41(2):408−418. doi: 10.16285/j.rsm.2019.0387

    JIN Qing,WANG Yilin,CUI Xinzhuang,et al. Deformation behaviour of geobelt in weathered rock material-tire shred lightweight soil under pullout condition[J]. Rock and Soil Mechanics,2020,41(2):408−418. doi: 10.16285/j.rsm.2019.0387
    [7]
    陈立庚. 废旧轮胎橡胶颗粒/水泥复合声屏障研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.

    CHEN Ligeng. Study on the noise barriermanufactured by the wastetyre crumb rubber and cementcomposites[D]. Harbin: Harbin Institute of Technology, 2019.
    [8]
    龚亦凡,陈 萍,张京旭,等. 废弃橡胶颗粒对再生骨料砂浆技术性能改良[J]. 硅酸盐学报,2021,49(10):2305−2312. doi: 10.14062/j.issn.0454-5648.20210043

    GONG Yifan,CHEN Ping,ZHANG Jingxu,et al. Improvement of engineering properties of recycled aggregate mortar by amending waste rubber particles[J]. Journal of the chinese ceramic society,2021,49(10):2305−2312. doi: 10.14062/j.issn.0454-5648.20210043
    [9]
    SU Haolin,YANG Jian,LING T C,et al. Properties of concrete prepared with waste tyre rubber particles of uniform and varying sizes[J]. Journal of Cleaner Production,2015,91:288−296. doi: 10.1016/j.jclepro.2014.12.022
    [10]
    辛 凌,沈 扬,刘汉龙. 单轴压力下RST轻质土变形特性及其细观机理分析[J]. 河海大学学报(自然科学版),2010,38(2):160−164.

    XIN Ling,SHEN Yang,LIU Hanlong. Deformation characteristics of RST light-weight soil under uniaxial pressure and its fine-scale mechanism analysis[J]. Journal of Hohai University(Natural Sciences),2010,38(2):160−164.
    [11]
    辛 凌,刘汉龙,沈 扬. 废弃轮胎橡胶颗粒轻质混合土强度特性试验研究[J]. 岩土工程学报,2010,32(3):428−433.

    XIN Ling,LIU Hanlong,SHEN Yang. Consolidated undrained triaxial compression tests on lightweight soil mixed with rubber chips of scrap tires[J]. Chinese Journal of Geotechnical Engineering,2010,32(3):428−433.
    [12]
    严捍东,麻秀星,陈秀峰,等. 废橡胶粉对混合砂浆性能影响的研究[J]. 环境工程学报,2008(3):418−423.

    YAN Handong,MA Xiuxing,CHEN Xiufeng,et al. Effect of waste rubber powder on properties of blending mortar[J]. Chinese Journal of Environment Engineering,2008(3):418−423.
    [13]
    刘方成,姚玉文,补国斌,等. 胶–砂粒径比对橡胶砂小应变动力特性的影响[J]. 岩土工程学报,2020,42(9):1659−1668.

    LIU Fangcheng,YAO Yuwen,BU Guobin et al. Effect of particle size ratio and mix ratio on mechanical behavior of rubber-sand mixtures[J]. Journal of Engineering Geology,2020,42(9):1659−1668.
    [14]
    刘方成, 吴孟桃, 王海东. 粒径比和配比对橡胶砂力学性能的影响研究[J]. 工程地质学报, 2019, 27(2): 376−389.

    LIU Fangcheng, WU Mengtao, WANG Haidong. Effect of particle size ratio and mix ratio on mechanical behavior of rubber-sand mixtures[J]. Journal of Engineering Geology, 2019, 27(2): 376−389.
    [15]
    LO PRESTI Davide,FECAROTTI Claudia,T CLARE Adam,et al. Toward more realistic viscosity measurements of tyre rubber–bitumen blends[J]. Construction and Building Materials,2014,67:270−278. doi: 10.1016/j.conbuildmat.2014.03.038
    [16]
    王 海,黄选明,朱明诚,等. 露天矿煤层裂隙注浆材料性能与帷幕截流技术[J]. 煤炭科学技术,2020,48(11):241−247.

    WANG Hai,HUANG Xuanming,ZHU Mingcheng,et al. Study on grouting material performance and water-blacking curtain wall technology injection to coal seam in open coal mine[J]. Coal Science and Technology,2020,48(11):241−247.
    [17]
    苗贺朝,王 海,王晓东,等. 粉煤灰基防渗注浆材料配比优选及其性能试验研究[J]. 煤炭科学技术,2022,50(9):230−239.

    MIAO Hechao,WANG Hai,WANG Xiaodong,et al. Study on the ratio optimization and performance test of fly ash-based impermeable grouting materials[J]. Coal Science and Technology,2022,50(9):230−239.
    [18]
    陈礼仪,王 胜. 粉煤灰灌浆材料的研究与应用[J]. 成都理工大学学报(自然科学版),2007(2):206−209.

    CHEN Liyi,WANG Sheng. Research and application of fly ash grouting material[J]. Journal of Chengdu University of Technology (Natural Science Edition),2007(2):206−209.
    [19]
    万 志. 劈裂注浆在黄河堤防防渗加固的试验研究[D]. 济南: 山东大学, 2019.

    WAN Zhi. Experimental investigation on anti-seepage reinforcement effect of fracture grouting in the yellow river embankment[D]. Jinan: Shandong University, 2019.
    [20]
    ZHANG Wenquan,ZHU Xianxiang,XU Shuanxiang. Experimental study on properties of a new type of grouting material for the reinforcement of fractured seam floor[J]. Journal of Materials Research and Technology-JMR& T,2019,8:5271−5282.
    [21]
    朱先祥. 底板采动裂隙固废注浆材料的基础试验研究[D]. 济南: 山东科技大学, 2020.

    ZHU Xianxiang. Basic experimental research on grouting mater-ial for mining bottom fissure solid waste[D]. Jinan: Shandong University of Science and Technology, 2020.
    [22]
    李见波,尹尚先. 近奥灰薄隔水层底板岩体变形破坏机制研究[J]. 煤炭科学技术,2021,49(12):173−179. doi: 10.3969/j.issn.0253-2336.2021.12.mtkxjs202112021

    LI Jianbo,YIN Shangxian. Study on deformation and rock failure mechanism of floor rock mass with thin aquifuge near Ordovician limestone[J]. Coal Science and Technology,2021,49(12):173−179. doi: 10.3969/j.issn.0253-2336.2021.12.mtkxjs202112021
    [23]
    孙亚军,张 莉,徐智敏,等. 煤矿区矿井水水质形成与演化的多场作用机制及研究进展[J]. 煤炭学报,2022,47(1):423−437. doi: 10.13225/j.cnki.jccs.YG21.1937

    SUN Yajun,ZHANG Li,XU Zhimin,et al. Multi-field action mechanism and research progress of coal mine water quality formation and evolution[J]. Journal of China Coal Society,2022,47(1):423−437. doi: 10.13225/j.cnki.jccs.YG21.1937
    [24]
    赵洪宝,刘一洪,刘绍强,等. 考虑动载扰动作用的窄煤柱巷道底板失稳机制[J]. 煤炭科学技术,2022,50(2):56−64. doi: 10.13199/j.cnki.cst.2021-1194

    ZHAO Hongbao,LIU Yihong,LIU Shaoqiang,et al. Instability mechanism of narrow coal pillar roadway floor considering dynamic load disturbance[J]. Coal Science and Technology,2022,50(2):56−64. doi: 10.13199/j.cnki.cst.2021-1194
    [25]
    贺东青,王金歌,王一鸣. 橡胶掺量对CBFRC的物理力学性能影响[J]. 建筑材料学报,2015,18(5):857−860. doi: 10.3969/j.issn.1007-9629.2015.05.025

    HE Dongqing,WANG Jinge,WANG Yiming. Effect of crumb rubber proportion on mechanical properties of chopped basalt fiber reinforced concrete[J]. Journal of Building Materials,2015,18(5):857−860. doi: 10.3969/j.issn.1007-9629.2015.05.025
    [26]
    肖建庄,李 标,张凯建,等. 纳米二氧化硅改性再生混凝土的单轴受压动态力学性能[J]. 同济大学学报(自然科学版),2021,49(1):30−39. doi: 10.11908/j.issn.0253-374x.20261

    XIAO Jianzhuang,LI Biao,ZHANG Kaijian,et al. Dynamic mechanical properties of nano-silica modified recycled aggregate concrete under uniaxial compression[J]. Journal of Tongji University(Natural Science),2021,49(1):30−39. doi: 10.11908/j.issn.0253-374x.20261
    [27]
    程小伟,黄 盛,龙 丹,等. 等离子改性废旧橡胶颗粒增强固井水泥石性能[J]. 石油学报,2014,35(2):371−376. doi: 10.7623/syxb201402020

    CHENG Xiaowei,HUANG Sheng,LONG Dan,et al. Improvement of the properties of plasma-modified ground tire rubber filled cement paste[J]. Acta Petrolei Sinica,2014,35(2):371−376. doi: 10.7623/syxb201402020
    [28]
    顾大钊,李 庭,李井峰,等. 我国煤矿矿井水处理技术现状与展望[J]. 煤炭科学技术,2021,49(1):11−18. doi: 10.13199/j.cnki.cst.2021.01.002

    GU Dazhao,LI Ting,LI Jingfeng,et al. Current status and prospects of coal mine water treatment technology in China[J]. Coal Science and Technology,2021,49(1):11−18. doi: 10.13199/j.cnki.cst.2021.01.002
    [29]
    李林林,朱俊福,靖洪文,等. 高温处理后花岗岩应力作用下渗透特性演化研究[J]. 煤炭科学技术,2021,49(7):45−50.

    LI Linlin,ZHU Junfu,JING Hongwen,et al. Study on evolution of granite permeability under stress after high temperature exposure[J]. Coal Science and Technology,2021,49(7):45−50.
  • Cited by

    Periodical cited type(8)

    1. 张宏图, 周甜, 王登科, 李博涛, 罗勇, 潘荣生, 唐家豪, 卢卫永. 基于应力–扩散–渗流耦合模型的低渗煤层水力割缝增透效果分析. 煤田地质与勘探. 2025(06)
    2. 易恩兵. 不同循环加卸载路径含瓦斯煤体变形—渗流特征. 能源与环保. 2025(02): 1-8 .
    3. 王勃,徐凤银,刘文革,邵嗣华,王宁,文建东,程国玺,屈争辉,谢亚东,韩甲业,李志,徐波,杨卫华,张艺腾,李长兴. 煤矿瓦斯动力灾害地面治理关键技术与应用. 煤田地质与勘探. 2025(04): 30-45 .
    4. 刘勇,张汶定,陈长江,魏建平,徐向宇,张宏图,南勤聪,校朋伟. 松软煤层无水化增透理论及技术发展趋势. 煤炭学报. 2025(04): 2123-2146 .
    5. 袁腾飞,闫才,孔震,韩飞,徐波. 复杂高应力区掘进工作面冲击地压发生机理与防治技术研究. 煤矿现代化. 2024(05): 66-72 .
    6. 梅安平. 基于节流压降原理的煤层段水力造穴钻头研究. 煤矿安全. 2024(10): 207-213 .
    7. 兰安畅. 高瓦斯厚煤层穿层钻孔瓦斯抽采方案模拟优化. 当代化工研究. 2024(19): 122-124 .
    8. 杨鹏,吕伟伟,周梦影,刘洋,吴攀飞,任亚龙. 可控冲击波煤层增透技术在吉宁煤矿的应用. 中国矿业. 2024(S2): 308-313 .

    Other cited types(3)

Catalog

    Article views (10270) PDF downloads (93) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return