Citation: | ZHANG Mingjie,DENG Wenbo,TAN Zhihong,et al. Research on filtering methane with spatial reticular stucture in coal seam roof fracture zone[J]. Coal Science and Technology,2023,51(S1):96−103. DOI: 10.13199/j.cnki.cst.2022-1147 |
The filtration and purification effect of the seam roof fracture zone on improving the concentration of gas drainage is generally recognized. Gas drainage technology of high-level borehole in fracture zone has also been widely used in gas prevention and control of mining face.In order to study the mechanism of gas filtration and purification, the spatial network structure formed in the fracture zone of coal seam roof is studied by combining theoretical analysis with CT scanning verification experiment. The results show that: there are a large number of macroscopic and microscopic fractures caused by mining in the caving zone, fracture zone and bending subsidence zone above the goaf of the mining face; the geometric size of the fractures gradually decreases, presenting a huge spatial reticular structure; the macroscopic fractures in the caving zone and the lower part of the fracture zone have a higher concentration of gas near the upper part due to the strong diffusion of CH4, and the microscopic fracture net in the middle and upper part of the fracture zone is similar to a huge thick filter membrane,which further inproves the CH4 concentration through viscous flow and Knudsen diffusion filtration.The engineering test results of dangjiahe coal mine in Fuxian show that the upper of the fracture zone with a vertical height of 16-18 m above the roof of the coal seam is the best filtration space of CH4, and the gas drainage concentration is generally above 50%, up to 73%. It is verified that the spatial reticular structure of the coal seam roof fracture zone is correct to filter and purify CH4. The research results have certain guiding significance for the arrangement of high-level drainage boreholes and the efficient drainage and utilization of mine gas.
[1] |
张 培,王文才. 高瓦斯特厚煤层首采工作面瓦斯涌出分布特征研究[J]. 科学技术与工程,2017,17(2):176−180.
ZHANG Pei,WANG Wencai. Research on gas emission and distribution of the first face in high gas and thick seam[J]. Science Technology and Engineering,2017,17(2):176−180.
|
[2] |
李晓泉. 采空区高位钻场与高抽巷瓦斯抽放方法对比及实例分析[J]. 煤矿安全,2011,42(5):122−125.
LI Xiaoquan. Comparison and case analysis of high-level drilling sites in goaf areas and high-pumping alley gas pumping methods[J]. Safety in Coal Mines,2011,42(5):122−125.
|
[3] |
郭明杰,郭文兵,袁瑞甫,等. 基于采动裂隙区域分布特征的定向钻孔空间位置研究[J]. 采矿与安全工程学报,2022,39(4):1−10.
GUO Mingjie,GUO Wenbing,YUAN Ruifu,et al. Spatial location determination of directional boreholes based on regional distribution characteristics of mining-induced overburden fractures[J]. Journal of Mining & Safety Engineering,2022,39(4):1−10.
|
[4] |
袁 亮,郭 华,沈宝堂,等. 低透气性煤层群煤与瓦斯共采中的高位环形裂隙体[J]. 煤炭学报,2011,36(3):357−365.
YUAN Liang,GUO Hua,SHEN Baotang,et al. Circular overlying zone at longwall panel for efficient methane capture of mutiple coal seams with low permeability[J]. Journal of China Coal Society,2011,36(3):357−365.
|
[5] |
胡彬强. 高位钻孔优势抽采区分布规律研究[J]. 工矿自动化,2019,45(7):102−108.
HU Binqiang. Research on distribution law of dominant gas extraction area of high-level borehole[J]. Journal of Mine Automation,2019,45(7):102−108.
|
[6] |
钱鸣高,许家林. 覆岩采动裂隙分布的“O”形圈特征研究[J]. 煤炭学报,1998,23(5):20−23.
QIAN Minggao,XU Jialin. Study on the characteristics of "O"-shaped circles in the distribution of fractures in overburden mining[J]. Journal of China Coal Society,1998,23(5):20−23.
|
[7] |
刘泽功,袁 亮,戴广龙,等. 开采煤层顶板环形裂隙圈内走向长钻孔法抽放瓦斯研究[J]. 中国工程科学,2004,6(5):32−38.
LIU Zegong,YUAN Liang,DAI Guanglong,et al. Study on the Extraction of Gas by Long Drilling Method in the Annular Fracture Circle of The Roof Plate of Mining Coal Seam[J]. Chinese Journal of Engineering Science,2004,6(5):32−38.
|
[8] |
张明杰,张庆堂,马 耕. 单一弱透气性厚煤层高位抽放技术的应用研究[J]. 煤炭科学技术,2003,31(12):80−82.
ZHANG Mingjie,ZHANG Qingtang,MA Geng. Application and research on high level gas drainage technology in single poor penetration thick seam[J]. Coal Science and Technology,2003,31(12):80−82.
|
[9] |
薛海腾,李希建,梁道富,等. 长距离定向钻孔瓦斯抽采技术在青龙煤矿的应用[J]. 工矿自动化,2020,46(2):34−38.
XUE Haiteng,LI Xijian,LIANG Daofu,et al. Application of long-distance directional drilling gas drainage technology in Qinglong Coal Mine[J]. Industry and Mine Automation,2020,46(2):34−38.
|
[10] |
侯国培,郭昆明,岳茂庄,等. 高位定向长钻孔瓦斯抽采技术应用[J]. 煤炭工程,2019,51(1):64−67.
HOU Guopei,GUO Kunming,YUE Maozhuang,et al. Application of gas drainage technology in high-level directional long drilling hole[J]. Coal Engineering,2019,51(1):64−67.
|
[11] |
林海飞,杨二豪,夏保庆,等. 高瓦斯综采工作面定向钻孔代替尾巷抽采瓦斯技术[J]. 煤炭科学技术,2020,48(1):136−143.
LIN Haifei,YANG Erhao,XIA Baoqing,et al. Directional drilling replacing tailgate gas drainage technology in gassy fully-mechanized coal mining face[J]. Coal Science and Technology,2020,48(1):136−143.
|
[12] |
李彦明. 基于高位定向长钻孔的上隅角瓦斯治理研究[J]. 煤炭科学技术,2018,46(1):215−218. doi: 10.13199/j.cnki.cst.2018.01.030
LI Yanming. Upper corner gas control based on high level directional long borehole[J]. Coal Science and Technology,2018,46(1):215−218. doi: 10.13199/j.cnki.cst.2018.01.030
|
[13] |
钱鸣高,许家林. 煤炭开采与岩层运动[J]. 煤炭学报,2019,44(4):973−984.
QIAN Minggao,XU Jialin. Behaviors of strata movement in coal mining[J]. Journal of China Coal Society,2019,44(4):973−984.
|
[14] |
黄庆享,韩金博. 浅埋近距离煤层开采裂隙演化机理研究[J]. 采矿与安全工程学报,2019,36(4):706−711.
HUANG Qingxiang,HAN Jinbo. Study on fracture evolution mechanism of shallow-buried close coal seam mining[J]. Journal of Mining & Safety Engineering,2019,36(4):706−711.
|
[15] |
钱鸣高, 缪协兴, 许家林, 等. 岩层控制的关键层理论[M]. 徐州: 中国矿业大学出版社, 2003: 2-3.
QIAN Minggao, MIU Xiexing, XU Jialin, et al. Critical layer theory of rock formation control[M]. Xuzhou: China University of Mining and Technology Press, 2003: 2-3.
|
[16] |
杨艳国,吴庆伟,石亚军,等. 某煤矿导水裂隙带发育高度计算[J]. 科技导报,2014,32(3):34−38. doi: 10.3981/j.issn.1000-7857.2014.03.004
YANG Yanguo,WU Qingwei,SHI Yajun,et al. Calculation on the height of water flowing fractured zone in a coal mine[J]. Science & Technology Review,2014,32(3):34−38. doi: 10.3981/j.issn.1000-7857.2014.03.004
|
[17] |
尹光志,李 星,韩佩博,等. 三维采动应力条件下覆岩裂隙演化规律试验研究[J]. 煤炭学报,2016,41(2):406−413. doi: 10.13225/j.cnki.jccs.2015.0344
YIN Guangzhi,LI Xing,HAN Peibo,et al. Experimental study on overburden strata fracture evolution law in three dimensional mine-induced stress conditions[J]. Journal of China Coal Society,2016,41(2):406−413. doi: 10.13225/j.cnki.jccs.2015.0344
|
[18] |
李树刚,石平五,钱鸣高. 覆岩采动裂隙椭抛带动态分布特征研究[J]. 矿山压力与顶板管理,1999(S1):44−46.
LI Shugang,SHI Pingwu,QIAN Minggao. Study on dynamic distribution characteristics of fractured oval throwing belt in rock cover mining[J]. Journal of Mining & Safety Engineering,1999(S1):44−46.
|
[19] |
赵毅鑫,令春伟,刘 斌,等. 浅埋超大采高工作面覆岩裂隙演化及能量耗散规律研究[J]. 采矿与安全工程学报,2021,38(1):9−18,30.
ZHAO Yixin,LING Chunwei,LIU Bin,et al. Fracture evolution and energy dissipation of overlying strata in shallow-buried underground mining with ultra-high working face[J]. Journal of Mining & Safety Engineering,2021,38(1):9−18,30.
|
[20] |
宗传欣,丁晓斌,南江普,等. 膜法VOCs气体分离技术研究进展[J]. 膜科学与技术,2020,40(1):284−293.
ZONG Chuanxin,DING Xiaobin,NAN Jiangpu,et al. Research progress of membrane baced removal of volatile organic compounds[J]. Membrane Science and Technology,2020,40(1):284−293.
|
[21] |
王 湛, 周 翀. 膜分离技术基础[M]. 北京: 化学工业出版社, 2006: 278−280.
WANG Zhan, ZHOU Chong. Fundamentals of membrane separation technology[M]. Beijing: Chemical Industry Press, 2006: 278−280.
|
[22] |
WAY J D,ROBERTS D L. Hollow fiber inorganic membranes for gas separations[J]. Separation Science,1992,27(1):29−41. doi: 10.1080/01496399208018863
|
1. |
张文柯. 高抽巷位置对瓦斯抽采效果影响分析. 能源技术与管理. 2024(01): 30-33 .
![]() | |
2. |
李守一,吴宽,游波,王俏,夏何亮,李易城. 流量考察钻孔数量对有效抽采半径的影响. 江西煤炭科技. 2024(04): 139-143 .
![]() |