GONG Wenhui,ZHU Xiaobo,LI Wang,et al. Analysis of phosphate dissolving effect and optimization of acid producing capacity of coal gangue protobacteria[J]. Coal Science and Technology,2023,51(S1):449−460
. DOI: 10.13199/j.cnki.cst.2022-1101Citation: |
GONG Wenhui,ZHU Xiaobo,LI Wang,et al. Analysis of phosphate dissolving effect and optimization of acid producing capacity of coal gangue protobacteria[J]. Coal Science and Technology,2023,51(S1):449−460 . DOI: 10.13199/j.cnki.cst.2022-1101 |
Coal gangue is the solid waste produced in the process of coal mining and coal washing, which has been occupied a large amount of land and polluted the environment. Therefore, it’s urgent for us to deal with coal gangue and comprehensive utilize it.The preparation of mineral fertilizer by microbial degradation of coal gangue is one of the most promising technologies to realize the reduction, harmless and resource recovery of coal gangue. In this paper, the phosphorus-releasing characteristics and mechanism of stenotrophomonas maltophilia (SM1) were studied, and the acid-producing energy of SM1 strain was optimized. High performance liquid chromatography (HPLC), X-ray diffraction (XRD) and X-ray fluorescence (XRF) were used to analyze the metabolites of bacteria, the phase composition of slag before and after phosphorus dissolution, and the chemical composition of raw ore, respectively, to reveal the mechanism of phosphorus dissolution of SM1 strain. The results of orthogonal experiment show that the optimal conditions of SM1 strain are as follows: coal gangue particle size 115 μm, pH=9, bacterial liquid concentration 2.85×1012 CFU/mL, liquid-solid ratio of 6∶1, and treatment duration 4 d. Compared with the best results of single factor experiment, the effective phosphorus dissolution of SM1 strain increases by 19% under this conditions. When the optimal acid production conditions are system temperature of 30 ℃, pH=8, 8 g/L sucrose (carbon source), 1 g/L ammonium chloride (nitrogen source), 0.3 g/L magnesium chloride and 0.3 g/L potassium dihydrogen phosphate (inorganic salt), the acid content (calculated by H+) increases by 0.014mol/L. A large amount of organic acids are metabolized by the strain by HPLC, and the XRD results of the slag before and after dissolving phosphorus-containing mineral residues show that the phosphate phase degraded by the strain is monetite, combined with the experiment of organic acid dissolving monetite, the phosphorus-solubilizing mechanism of SM1 strain is further verified by the organic acid dissolving monetite from coal gangue. The content of available phosphorus after optimized acid production is 12.7% higher than that of orthogonal experiment.
[1] |
周 楠,姚依南,宋卫剑,等. 煤矿矸石处理技术现状与展望[J]. 采矿与安全工程学报,2020,37(1):136−146. doi: 10.13545/j.cnki.jmse.2020.01.015
ZHOU Nan,YAO Yinan,SONG Weijian,et al. Present situation and prospet of coal gangue teeatment technology[J]. Journal of Mining & Safety Engineering,2020,37(1):136−146. doi: 10.13545/j.cnki.jmse.2020.01.015
|
[2] |
张吉秀,孙恒虎,万建华,等. 煤矸石胶凝材料水化产物及聚合度分析[J]. 中南大学学报(自然科学版),2011,42(2):329−335.
ZHANG Jixiu,SUN Henghu,WAN Jianhua,et al. Si polymerization degree of hydrates in coal gangue added cement[J]. Journal of Central South University (Science and Technology),2011,42(2):329−335.
|
[3] |
吴昌宁,翁 力,李俊国,等. 微矿分离: 煤炭清洁化与土壤改良的新契机[J]. 科学通报,2021,66(25):3352−3364. doi: 10.1360/TB-2021-0067
WU Changning,WENG Li,LI Junguo,et al. A novel mineral separation process: New opportunity for clean coal utilization and soil remediation[J]. Chinese Science Bulletin,2021,66(25):3352−3364. doi: 10.1360/TB-2021-0067
|
[4] |
王新伟,钟宁宁,韩习运. 煤矸石堆放对土壤环境PAHs污染的影响[J]. 环境科学学报,2013,33(11):3092−3100. doi: 10.13671/j.hjkxxb.2013.11.029
WANG Xinwei,ZHONG Ningning,HAN Xiyun. Impacts of coal gangue stockpiling on polycyclic aromatic hydrocarbons pollution in soil environment[J]. Acta Scientiae Circumstantiae,2013,33(11):3092−3100. doi: 10.13671/j.hjkxxb.2013.11.029
|
[5] |
JIANG X,LU W X,ZHAO H Q,et al. Potential ecological risk assessment and prediction of soil heavy-metal pollution around coal gangue dump[J]. Natural hazards and earth system sciences,2014,14(6):1599−1610. doi: 10.5194/nhess-14-1599-2014
|
[6] |
XUE Q,LU H,ZHAO Y,et al. The metal ions release and microstructure of coal gangue corroded by acid-based chemical solution[J]. Environmental Earth Sciences,2013,71(7):3235−3244.
|
[7] |
严家平,陈孝杨,蔡 毅,等. 不同风化年限的淮南矿区煤矸石理化性质变化规律[J]. 农业工程学报,2017,33(3):168−174. doi: 10.11975/j.issn.1002-6819.2017.03.023
YAN Jiaping,CHEN Xiaoyang,CAI Yi,et al. Physicochemical property change regularities of coal gangue with different weathering ages in Huainan Minging Area[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2017,33(3):168−174. doi: 10.11975/j.issn.1002-6819.2017.03.023
|
[8] |
LI J, WANG J. Comprehensive utilization and environmental risks of coal gangue: A review [J]. Journal of Cleaner Production, 2019, 239.
|
[9] |
朱晓波,巩文辉,李 望,等. 活化焙烧-联合浸出法制备白炭黑实验研究[J]. 矿产综合利用,2021(6):29−33.
ZHU Xiaobo,GONG Wenhui,LI Wang,et al. Experimental study on preparation of silica by activated roasting-combined leaching method[J]. Comprehensive Utilization of Mineral Resources,2021(6):29−33.
|
[10] |
罗作球,姚 源,孟 刚,等. 煤矸石用作混凝土集料的建材资源化研究进展[J]. 材料导报,2015,29(S2):462−475.
LUO Zuoqiu,YAO Yuan,MENG Gang,et al. Utilization of coal gangue as concrete aggregate for building materials[J]. Material review,2015,29(S2):462−475.
|
[11] |
刘 轩,傅建春,牛海鹏,等. 阳泉一矿土地利用结构变化及景观综合稳定性评价[J]. 煤炭学报,2016,41(3):719−726. doi: 10.13225/j.cnki.jccs.2015.0511
LIU Xuan,FU Jianchun,NIU Haipeng,et al. Analysis on changes of land use structure and assessment of landscape comprehensive stability in Yangquan 1st Mine[J]. Journal of China Coal Society,2016,41(3):719−726. doi: 10.13225/j.cnki.jccs.2015.0511
|
[12] |
贾鲁涛,吴倩云. 煤矸石特性及其资源化综合利用现状[J]. 煤炭技术,2019,38(11):37−40. doi: 10.13301/j.cnki.ct.2019.11.014
JIA Lutao,WU Qianyun. Properties and comprehensive utilization status of coal gangue resource[J]. Coal Technology,2019,38(11):37−40. doi: 10.13301/j.cnki.ct.2019.11.014
|
[13] |
王志超,曾 鸣,张 辰,等. 煤矸石砖烧结固硫的实验研究[J]. 环境科学与技术,2021,44(8):24−29. doi: 10.19672/j.cnki.1003-6504.2061.20.338
WANG Zhichao,ZENG Ming,ZHANG Chen,et al. Experimental study of sulfur-fixation in coal cangue brick sintering[J]. Environmental Science & Technology,2021,44(8):24−29. doi: 10.19672/j.cnki.1003-6504.2061.20.338
|
[14] |
任晓玲,周蕙昕,高 明,等. 煤矸石肥料的研究进展[J]. 中国煤炭,2021,47(1):103−109. doi: 10.3969/j.issn.1006-530X.2021.01.016
REN Xiaoling,ZHOU Huixin,GAO Ming,et al. Research progress of coal gangue fertilizer[J]. China Coal,2021,47(1):103−109. doi: 10.3969/j.issn.1006-530X.2021.01.016
|
[15] |
王生全,谢宵斐,侯晨涛,等. 煤矸石制作硅肥技术试验研究[J]. 煤田地质与勘探,2009,37(6):43−46. doi: 10.3969/j.issn.1001-1986.2009.06.011
WANG Shengquan,XIE Xiaofei,HOU Chentao,et al. Technology for producing silicon fertilizer from coal gangue[J]. Coal Geology & Exploration,2009,37(6):43−46. doi: 10.3969/j.issn.1001-1986.2009.06.011
|
[16] |
朱福英, 刘 胜, 许 辉, 等. 煤矸石制备水溶性硅肥的工艺 [P]. 中国: CN108821801A, 2018-09-04.
|
[17] |
田 晔,刘小燕,张明旭. 微生物促进煤矸石复垦利用研究现状与展望[J]. 硅酸盐通报,2015,34(9):2529−2533. doi: 10.16552/j.cnki.issn1001-1625.2015.09.024
TIAN Ye,LIU Xiaoyan,ZHANG Mingxu. Current status and prospect of promotion use in coal gangue reclamation with microorganisms[J]. Bulletin of the Chinese Ceramic Society,2015,34(9):2529−2533. doi: 10.16552/j.cnki.issn1001-1625.2015.09.024
|
[18] |
ZHANG B H,HONG J P,ZHANG Q,et al. Contrast in soil microbial metabolic functional diversity to fertilization and crop rotation under rhizosphere and non-rhizosphere in the coal gangue landfill reclamation area of Loess Hills[J]. PloS One,2020,15(3):e229341.
|
[19] |
孙德四,张贤珍,肖国光. “钾”细菌浸出富钾火成岩及细菌群落结构的变化[J]. 中南大学学报(自然科学版),2014,45(9):2941−2951.
SUN Desi,ZHANG Xianzhen,XIAO Guoguang. Bioleaching of rich-potassium igneous rock by potassium-solubilizing culture and change of bacterial community structure during leaching process[J]. Journal of Central South University (Science and Technology),2014,45(9):2941−2951.
|
[20] |
钟 艳,杨艳梅,谢承卫. 利用巨大芽孢杆菌处理高硫和低硫煤矸石制备肥料的研究[J]. 贵州师范学院学报,2015,31(12):18−25. doi: 10.3969/j.issn.1674-7798.2015.12.007
ZHONG Yan,YANG Yanmei,XIE Chengwei. Study on the preparation of high - sulfur and low - sulfur coal gangue fertilizers by bacillus megaterium[J]. Journal of Guizhou Education University,2015,31(12):18−25. doi: 10.3969/j.issn.1674-7798.2015.12.007
|
[21] |
贾倩倩,程 帆,谢承卫. 利用硅酸盐细菌(GY03)制备煤矸石肥料的研究[J]. 粉煤灰综合利用,2012(2):28−31. doi: 10.3969/j.issn.1005-8249.2012.02.008
JIA Qianqian,CHENG Fan,XIE Chengwei. Study on the preparation of coal gangue fertilizer by silicate bacteria (GY03)[J]. Fly Ash Comprehensive Utilization,2012(2):28−31. doi: 10.3969/j.issn.1005-8249.2012.02.008
|
[22] |
阮继生. “伯杰氏系统细菌学手册(第二版)”第5卷与我国的放线菌系统学研究[J]. 微生物学报,2013,53(6):521−530. doi: 10.13343/j.cnki.wsxb.2013.06.009
RUAN Jisheng. "Berjie's handbook of systematic bacteriology (second Edition)" volume 5 and the study of actinomycetes systematics in my country[J]. Acta Microbiology,2013,53(6):521−530. doi: 10.13343/j.cnki.wsxb.2013.06.009
|
[23] |
胡功允,张琪霞,谢旭一. 比浊法测定抗生素微生物检定试验菌菌液浓度[J]. 西北药学杂志,1997,12(3):104−105.
HU Gongyun,ZHANG Qixia,XIE Xuyi. Determination of bacterial liquid concentration of antibiotic microbiological test by turbidimetric method[J]. Northwest Pharmaceutical Journal,1997,12(3):104−105.
|
[24] |
鲍士旦. 土壤农化分析(第三版)[M]. 北京: 中国农业出版社, 2001: 70-97.
BAO Shidan. Soil agrochemical analysis (third edition) [M]. Beijing: China Agricultural Press, 2001: 70-97
|
[25] |
余 健,王鑫鑫,房 莉,等. 有机酸培养时间和种类对煤矸石碎屑组成及速效养分的影响[J]. 农业工程学报,2020,36(2):228−235.
YU Jian,WANG Xinxin,FANG Li,et al. Impact of organic acids cultivation time and types on composition of debris and available nutrient in coal gangue[J]. Transactions of the Chinese Society of Agricultural Engineering,2020,36(2):228−235.
|
[26] |
程功林,陈永春. 淮南矿区煤矸石资源化利用实践[J]. 能源环境保护,2009,23(4):61−64. doi: 10.3969/j.issn.1006-8759.2009.04.019
CHENG Gonglin. CHEN Yongchun. Practice on utilization practice of coal gangue in Huainan Mining area[J]. Energy Environmental Protection,2009,23(4):61−64. doi: 10.3969/j.issn.1006-8759.2009.04.019
|
[27] |
秦俊梅,白中科,马祥爱,等. 煤矸石自然风化及人工模拟风化过程中盐分及pH值的动态变化-以平朔露天矿区为例[J]. 土壤通报,2007(4):649−652. doi: 10.3321/j.issn:0564-3945.2007.04.006
QIN Junmei,BAI Zhongke,MA Xiangai,et al. The dynamic changes in toal salt and pH value of coal gangue wast rock in the process of nature and man-made simulation weathering-taking Pingshuo opencast mine area as an exampie[J]. Chinese Journal of Soil Science,2007(4):649−652. doi: 10.3321/j.issn:0564-3945.2007.04.006
|
[28] |
陈 武. 中国西北地区几种尘类矿物与微生物界膜电性特征研究 [D]. 绵阳: 西南科技大学, 2014.
CHEN Wu. Study on electrical properties of several dust-like minerals and microbial communities in northwest China [D]. Mianyang: Southwest University of Science and Technology, 2014.
|
[29] |
杨丹丹,张心青,杨传伦,等. 一株产酸氏菌发酵培养基优化[J]. 微生物学杂志,2020,40(6):75−83.
YANG Dandan,ZHANG Xinqing,YANG Chuanlun,et al. Optimization of fermentation medium for acid-producing klebsiella oxytoca[J]. Journal of Microbiology,2020,40(6):75−83.
|
[30] |
任雨龙,李畅洋,孙 愉,等. 牛源嗜麦芽寡养单胞菌的分离鉴定、毒力、耐药基因及生物学特性分析[J]. 中国兽医学报,2022,43(8):1−8.
REN Yulong,LI Changyang,SUN Yu,et al. Isolation, identification, virulence, drug resistance gene and biological characteristics analysis of stenotrophomonas maltophilia from cows[J]. Chinese Journal of Veterinary Science,2022,43(8):1−8.
|
[31] |
刘津江,王 淼,樊 敏,等. 产脲酶微生物的筛选和应用研究进展[J]. 生物技术,2022,32(1):107−113.
LIU Jinjiang,WANG Miao,FAN Min,et al. Research advances in application and screening of urease producing microorganisms[J]. Biotechnology,2022,32(1):107−113.
|
1. |
孙爱娣,白雪蕊,毕银丽. 神府矿区高效解磷菌的分离及其对煤矸石养分的活化作用. 微生物学通报. 2025(05): 2071-2086 .
![]() | |
2. |
王林,李望,朱晓波,燕旭东. 巨大芽孢杆菌在赤泥脱碱中的应用及作用机制. 中国有色金属学报. 2024(03): 947-958 .
![]() |