Advance Search

WANG Kaifei,ZHANG Changsuo,HAO Bingyuan,et al. Study on initiation and propagation mechanism of internal cracks caused by dynamic and static action of shaped charge blasting under in-situ stress[J]. Coal Science and Technology,2023,51(S1):50−64

. DOI: 10.13199/j.cnki.cst.2022-1042
Citation:

WANG Kaifei,ZHANG Changsuo,HAO Bingyuan,et al. Study on initiation and propagation mechanism of internal cracks caused by dynamic and static action of shaped charge blasting under in-situ stress[J]. Coal Science and Technology,2023,51(S1):50−64

. DOI: 10.13199/j.cnki.cst.2022-1042

Study on initiation and propagation mechanism of internal cracks caused by dynamic and static action of shaped charge blasting under in-situ stress

Funds: 

Open Fund Project of State Key Laboratory of Explosive Science and Technology, Beijing Institute of Technology (KFJJ20-05M)

More Information
  • Received Date: July 04, 2022
  • Available Online: July 12, 2023
  • Deep hard rock blasting is a free surface blasting process under the coupling effect of explosive dynamic and static load and in-situ stress. In-situ stress has a strong inhibition effect on blasting crack propagation, which greatly limits the application of deep hole blasting in the engineering of hard rock pre-weakening and roof cutting and pressure relief. In order to clarify the action mechanism of stress wave and explosive gas on crack initiation and propagation in infinite rock blasting under the influence of in-situ stress, based on explosion mechanics and fracture mechanics, the length of guided crack in shaped charge blasting action was theoretically deduced. Combined with LS-DYNA software, the process of crack initiation and propagation in rock under dynamic and static action of shaped charge blasting with or without the influence of ground stress is simulated and analyzed visually. The results show that: 1) The numerical simulation results indicate that the time cut-off point of dynamic and static action is 32 μs, and the phase of shaped charge blasting action is dominant for crack initiation and initial propagation. The static action of explosive gas is the dominant factor for crack propagation. 2) When there is no in-situ stress, the crack propagation length in the phase of static action is 11 times longer than that in the phase of stress wave action. Compared with the condition without in-situ stress, when the in-situ stress is 20 MPa, the crack length in the action stage of shaped blasting is inhibited by 12.4%, and the crack length in the static action stage is inhibited by 86.3%. The in-situ stress mainly inhibits the crack growth in the static action stage of the later explosive gas. When the lateral stress is perpendicular to the direction of crack growth, the inhibitory effect decreases with the increase of the lateral stress. 3) Based on the background of roof cutting and pressure relief engineering of N1302 working face in Gucheng Mine, the crack propagation mechanism of in-situ stress and dynamic and static action of deep-hole blasting was considered through numerical simulation, and the optimal decoupling coefficient was finally determined to be 1.3, and the hole spacing was1000mm. The engineering inspection effect after explosion was good, and directional pre-cracks were formed in the hole.

  • [1]
    BROWN J W. Statistical study of rock drilling by hypervelocity jets from explosive shaped charges[D]. Missouri: University of Missouri-Rolla, 1971: 10-26.
    [2]
    罗 勇,沈兆武. 聚能药包在岩石定向断裂爆破中的应用研究[J]. 爆炸与冲击,2006,26(3):250−251.

    LUO Yong,SHEN Zhaowu. Research on the application of shaped packages in directional fracture blasting of rocks[J]. Explosion Shock Waves,2006,26(3):250−251.
    [3]
    车玉龙. 异形药包爆破作用机理及对围岩的损伤效应研究[D]. 北京: 中国矿业大学, 2015: 21-44.

    CHE Yulong. Study on the mechanism of irregular cartridge and the damage of surrounding rock[D]. Beijing: China University of Mining & Technology, 2015: 21-44.
    [4]
    李 清,于 强,朱各勇,等. 不同药量的切缝药包双孔爆破裂纹扩展规律试验[J]. 岩石力学与工程学报,2017,36(9):2205−2212.

    LI Qing,YU Qiang,ZHU GeYong,et al. Experimental study of crack propagation under two-hole slotted cartridge blasting with different amounts of charge[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(9):2205−2212.
    [5]
    高金石,杨 军,张继春. 准静态压力作用下岩体爆破成缝方向与机理的研究[J]. 爆炸与冲击,1990,10(1):76−84.

    GAO Jingshi,YANG Jun,ZHANG Jichun. Studies on the direction and mechanism of rock blasting cracking under the action of quasistatic pressure[J]. Explosion and Shock Waves,1990,10(1):76−84.
    [6]
    杨小林,王梦恕. 爆生气体作用下岩石裂纹的扩展机理[J]. 爆炸与冲击,2001,21(2):111−116.

    YANG Xiaolin,WANG Mengshu. Mechanism of rock crack growth under detonation gas loading[J]. Explosion and Shock Waves,2001,21(2):111−116.
    [7]
    廖文旺. 爆生气体作用下裂隙岩体裂纹扩展模式研究[D]. 长春: 吉林大学, 2019: 27-65.

    LIAO Wenwang. Study on crack propagation model of fractured rock mass under the action of detonation gas[D]. Changchun: Jilin University, 2019: 27-65.
    [8]
    何满潮,郭鹏飞,张晓虎,等. 基于双向聚能拉张爆破理论的巷道顶板定向预裂[J]. 爆炸与冲击,2018,38(4):795−803.

    HE Manchao,GUO Pengfei,ZHANG Xiaohu,et al. Directional pre-splitting of roadway roof based on the theory of bilateral cumulative tensile explosion[J]. Explosion and Shock Waves,2018,38(4):795−803.
    [9]
    GUO P,YE K,TAO Z,et al. Experimental study on key parameters of bidirectional cumulative tensile blasting with coal-containing composite roof[J]. KSCE Journal of Civil Engineering.,2021,25(5):1718−1731. doi: 10.1007/s12205-021-1474-y
    [10]
    张胜利,张昌锁,王银涛,等. 定向断裂爆破在综放工作面初采切巷的应用[J]. 北京理工大学学报,2017,37(2):135−140.

    ZHANG Shengli,ZHANG Changsuo,WANG Yintao,et al. Directional fracture blasting in open-off cut of fully-mechanized caving mining face during primary mining[J]. Transactions of Beijing Institute of Technology,2017,37(2):135−140.
    [11]
    郭德勇,赵杰超,张 超,等. 煤层深孔聚能爆破控制孔作用机制研究[J]. 岩石力学与工程学报,2018,37(4):919−930.

    GUO Deyong,ZHAO Jiechao,ZHANG Chao,et al. Mechanism of control hole on coal crack initiation and propagation under deep-hole cumulative blasting in coal seam[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(4):919−930.
    [12]
    郭德勇,赵杰超,朱同功,等. 双孔聚能爆破煤层裂隙扩展贯通机理[J]. 工程科学学报,2020,42(12):1613−1623.

    GUO Deyong,ZHAO Jiechao,ZHU Tonggong,et al. Crack propagation and coalescence, mechanism of double-hole cumulative blasting in coal seam[J]. Chinese Journal of Engineering,2020,42(12):1613−1623.
    [13]
    郭德勇,张 超,李 柯,等. 松软低透煤层深孔微差聚能爆破致裂机理[J]. 煤炭学报,2021,46(8):2583−2592.

    GUO Deyong,ZHANG Chao,LI Ke,et al. Mechanism of millisecond-delay detonation on coal cracking under deep-hole cumulative blasting in soft and low permeability coal seam[J]. Journal of China Coal Society.,2021,46(8):2583−2592.
    [14]
    何满潮,谢和平,彭苏萍等. 深部开采岩体力学研究[J]. 岩石力学与工程学报,2005,34(16):2803−2813.

    HE Manchao,XIE Heping,PENG Suping,et al. Study on rock mechanics in deep mining engineering[J]. Chinese Journal of Rock Mechanics and Engineering,2005,34(16):2803−2813.
    [15]
    魏晨慧,朱万成,白 羽,等. 不同地应力条件下切缝药包爆破的数值模拟[J]. 爆炸与冲击,2016,36(2):161−169.

    WEI Chenhui,ZHU Wancheng,BAI Yu,et al. Numerical simulation on cutting seam cartridge blasting under different in-situ stress conditions[J]. Explosion and Shock Waves,2016,36(2):161−169.
    [16]
    彭建宇,李元辉,张凤鹏,等. 单向静载下柱状药包爆破裂纹扩展规律及机制[J]. 中国矿业,2017,26(1):88−91.

    PENG Jianyu,LI Yuanhui,ZHANG Fengpeng,et al. Crack propagation rule and mechanism of cylindrical blasting under uniaxial static load[J]. China Mining Magazine,2017,26(1):88−91.
    [17]
    LI X,ZHU Z,WANG M,et al. Numerical study on the behavior of blasting in deep rock masses[J]. Tunneling and Underground Space Technology,2021,113:103968. doi: 10.1016/j.tust.2021.103968
    [18]
    XIE L X,LU W B,Zhang Q B,et al. Analysis of damage mechanisms and optimization of cut blasting design under high in-situ stresses[J]. Tunnelling and Underground Space Technology,2017,66:19−33. doi: 10.1016/j.tust.2017.03.009
    [19]
    李夕兵. 凿岩爆破工程(第二版)[M]. 长沙: 中南大学出版社, 2011: 289−292.

    LI Xibing. Rock drilling and blasting engineering (second edition)[M]. Changsha: Central South University Press, 2011: 289−292.
    [20]
    张百胜,王朋飞,崔守清等. 大采高小煤柱沿空掘巷切顶卸压围岩控制技术[J]. 煤炭学报,2021,46(7):2254−2267.

    ZHANG Baisheng,WANG Pengfei,CUI Shouqing,et al. Mechanism and surrounding rock control of roadway driving along gob in shallow-buried, large mining height and small coal pillars by roof cutting[J]. Journal of China Coal Society,2021,46(7):2254−2267.
    [21]
    张自政,柏建彪,陈勇等. 浅孔爆破机制及其在厚层坚硬顶板沿空留巷中的应用[J]. 岩石力学与工程学报,2016,35(S1):3008−3017.

    ZHANG Zizheng,BAI Jianbiao,CHEN Yong,et al. Shallow-hole blasting mechanism and its application for gob-side entry retaining with thick and hard roof[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(S1):3008−3017.
    [22]
    陈 勇,郝胜鹏,陈延涛,等. 带有导向孔的浅孔爆破在留巷切顶卸压中的应用研究[J]. 采矿与安全工程学报,2015,32(2):253−259.

    CHEN Yong,HAO Chenpeng,CHEN Yantao,et al. Study on the application of short-hole blasting with guide hole to roof cutting pressure relief of gob-side entry retaining[J]. Journal of Mining & Safety Engineering,2015,32(2):253−259.
    [23]
    王文龙. 钻眼爆破[M]. 北京: 煤炭工业出版社, 1984: 71−89.

    WANG Wenlong. Drilling and blasting [M]. Beijing: China Coal Industry Press, 1984: 71−89.
    [24]
    戴俊. 岩石动力学特性与爆破理论(第二版)[M]. 北京: 冶金工业出版社, 2002: 220.

    DAI Jun. Dynamic behaviorsand blasting theory of rock (second edition)[M]. Beijing: Metallurgical Industry Press, 2002: 220.
    [25]
    张 奇. 岩石爆破的粉碎区及其空腔膨胀[J]. 爆炸与冲击,1990,10(1):68−75.

    ZHANG Qi. Smash districts and expanding of cavities in rock blasting[J]. Explosion and Shock Waves,1990,10(1):68−75.
    [26]
    韦祥光. 爆轰波聚能爆破的技术基础研究[D]. 大连: 大连理工大学, 2012: 19−34.

    WEI Xiangguang. Technique basis research on the assembling energy blasting of detonation waves[D]. Dalian: Dalian University of Technology, 2012: 19−34.
    [27]
    SCHMIDT R A, ROSSMANITH H P. Basics of rock fracture mechanics[M]. Vienna: Springer, 1983: 31−66.
    [28]
    吴 波,韦 汉,徐世祥,等. 不同装药结构的双向聚能药包爆破数值研究[J]. 工程爆破,2021,27(1):14−21.

    WU Bo,WEI Han,XU Shixiang,et al. Numerical study of two-way shaped charge blasting with different charge structures[J]. Engineering Blasting,2021,27(1):14−21.
    [29]
    毕程程. 华山花岗岩HJC本构参数标定及爆破损伤数值模拟[D]. 安徽: 合肥工业大学, 2018: 12−29.

    BI Chengcheng. Calibration of HJC constitutive parameters of Huashan granite and its blasting damage numerical simulation[D]. Anhui: Hefei University of Technology, 2018: 12−29.
    [30]
    MOURA R T,CLAUSEN A H,FAGERHOLT E,et al. Impact on HDPE and PVC plates–experimental tests and numerical simulations[J]. International Journal of Impact Engineering,2010,37(6):580−598. doi: 10.1016/j.ijimpeng.2009.12.004
    [31]
    HOLMQUIST T J,JOHNSON G R. A computational constitutive model for glass subjected to large strains, high strain rates and high pressures[J]. Journal of Applied Mechanics,2011,78(5):051003. doi: 10.1115/1.4004326
    [32]
    索 强,徐 鹏,尤文斌. 网格划分对冲击波波形的影响分析[J]. 兵器装备工程学报,2020,41(2):198−203.

    SUO Qiang,XU Peng,YOU Wenbing. Analysis of influence of mesh generation on shock wave type[J]. Journal of Ordnance Equipment Engineering,2020,41(2):198−203.
    [33]
    LI X B,LOK T S,ZHAO J. Dynamic characteristics of granite subjected to intermediate loading rate[J]. Rock Mechanics and Rock Engineering,2005,38(1):21−39. doi: 10.1007/s00603-004-0030-7
    [34]
    BIRKIMER D L. A possible fracture criterion for the dynamic tensile strength of rock [A]. The 12th US Symposium on Rock Mechanics (USRMS)[C]. OnePetro, 1970.
    [35]
    YILMAZ O,UNLU T. Three dimensional numerical rock damage analysis under blasting load[J]. Tunnelling and Underground Space Technology,2013,38:266−278. doi: 10.1016/j.tust.2013.07.007
    [36]
    岳中文,张士春,邱 鹏,等. 装药结构对切缝药包爆破效果影响的研究[J]. 振动与冲击,2018,37(10):27−34.

    YUE Zhongwen,ZHANG Shichun,QIU Peng,et al. Influence of charge structures on the slotted cartridge blasting effect[J]. Journal of Vibration and Shock,2018,37(10):27−34.
    [37]
    KIRSCH,E. G. Die Theorie der Elasitzit¨at und die Bedürfnisse der Festigkeitslehre[J]. Z VDI. Z Verein Deutsch Ing,1898,42:797−807.
    [38]
    YANG X,YUAN D,XUE H,et al. Study on the mechanism of crack formation and the behavior of crack propagation of directional tension blasting in deep and high stress coal mine[J]. Environmental Earth Sciences.,2020,570(5):052001.
    [39]
    ZHOU Z, LI X, ZOU Y, et al. Dynamic Brazilian tests of granite under coupled static and dynamic loads. [J] Rock Mechanics and Rock Engineering, 2014, 47(2): 495−505.
    [40]
    CHEN R,LI K,XIA K,et al. Dynamic fracture properties of rocks subjected to static pre-load using notched semi-circular bend method[J]. Rock Mechanics and Rock Engineering,2016,49(10):3865−3872. doi: 10.1007/s00603-016-0958-4
    [41]
    ZHANG Z X. Rock fracture and blasting: theory and applications[M]. Oxford : Butterworth-Heinemann, 2016: 143.
  • Related Articles

    [1]LIN Haifei, ZHOU Jie, GAO Fan, JIN Hongwei, YANG Zhuoya, LIU Shihao. Coal seam gas content prediction based on fusion of feature selection and machine learning[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(5): 44-51.
    [2]WU Deshan, DONG Zhenguo, CUI Chunlan. Optimum drilling design of high deviated directional wells and its application[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (4).
    [3]LI Zien. Selection and optimization of flocculant for black water treatment from coal water slurry gasification[J]. COAL SCIENCE AND TECHNOLOGY, 2017, (9).
    [4]LEI Huang. Study on characteristics and optimum match of walking hydraulic system for support carrier[J]. COAL SCIENCE AND TECHNOLOGY, 2017, (9).
    [5]Zhao Yadong Zhang Suian Liu Bingqian He Jiayuan, . Optimum technology of horizontal well drilling layer in coal reservoir[J]. COAL SCIENCE AND TECHNOLOGY, 2017, (3).
    [6]Performance Test on Emulsion Liquid of Hydraulic Powered Support and Selection and Maintenance Plan[J]. COAL SCIENCE AND TECHNOLOGY, 2012, (3).
    [7]Experiment Study on Selective Flocculation Separation of Fine Particle Coal[J]. COAL SCIENCE AND TECHNOLOGY, 2012, (3).
    [8]Experiment Study on Index Gas Selection of Coal Spontaneous Combustion in Pingshuo Mining Area[J]. COAL SCIENCE AND TECHNOLOGY, 2012, (2).
    [9]Analysis on Thermal Environment and Selection of Airflow Cooling Methods in Coal Mining Face[J]. COAL SCIENCE AND TECHNOLOGY, 2011, (6).
    [10]Rational Selection of Mining Method for High Cutting Coal Mining Face[J]. COAL SCIENCE AND TECHNOLOGY, 2011, (5).
  • Cited by

    Periodical cited type(7)

    1. 于超, 仝英利, 刘昊, 陈长钦, 孙海防, 宋坤明. 基于层次分析法的FPSO油气水分离系统综合评价指标权重分析. 海洋工程装备与技术. 2025(02)
    2. 苗葳, 武强, 李国栋, 许延春, 李兴国. 基于底板“双关键层”控水模型优化地面区域水害治理方案. 中国煤炭. 2025(06)
    3. 胥翔. 煤矿巷道掘进地面区域超前探查治理技术. 煤炭科技. 2025(02): 136-139 .
    4. 张海涛,谢治刚,孙贵,许光泉,杨洋,刘星,李旭,贺江辉,许成成. 两淮煤田深部岩溶构造发育特征及水害地面区域探查治理模式. 煤炭工程. 2025(04): 56-64 .
    5. 孟红伟,岳俊超,张平卿,王怀,习通,何江根,王子涵,王心义. 帷幕注浆封堵寒武系灰岩导水通道效果定量判识. 能源与环保. 2024(07): 87-97 .
    6. 赵相朋. 奥灰水害地面超前区域治理方法研究. 煤炭与化工. 2024(07): 56-60 .
    7. 赵彤,张圣柱,王旭,杨祉涵,王如君,多英全. 油气长输管线路由评价指标体系及模型构建研究. 中国安全生产科学技术. 2023(S2): 108-114 .

    Other cited types(4)

Catalog

    Article views (114) PDF downloads (33) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return