Advance Search

FENG Longfei,WANG Shuangming,WANG Hai,et al. Micro pore characteristics of Luohe aquifer sandstone in Binchang Mining Area typical roof water hazard mines[J]. Coal Science and Technology,2023,51(8):208−218

. DOI: 10.13199/j.cnki.cst.2022-1016
Citation:

FENG Longfei,WANG Shuangming,WANG Hai,et al. Micro pore characteristics of Luohe aquifer sandstone in Binchang Mining Area typical roof water hazard mines[J]. Coal Science and Technology,2023,51(8):208−218

. DOI: 10.13199/j.cnki.cst.2022-1016

Micro pore characteristics of Luohe aquifer sandstone in Binchang Mining Area typical roof water hazard mines

Funds: 

National Natural Science Foundation of China(52004326); Natural Science Basic Research Program of Shaanxi Province in 2023 (2023-JC-QN-0459)

More Information
  • Received Date: August 24, 2022
  • Available Online: July 17, 2023
  • The mining of Huanglong Coalfield faces a serious threat from roof sandstone water disaster of the extremely thick Luohe Formation. A laboratory study on the microscopic pore characteristics of the sandstone of the Luohe Formation in the Gaojiapu Coal Mine, Binchang Mining Area were carried out using various methods. XRD diffraction, casting thin sections, and scanning electron microscopy were combined to study the pore types of the sandstone particles. Overburden porosimeter was used to illustrate the variation characteristics of porosity and permeability under different confining pressures. High-pressure mercury injection and nuclear magnetic resonance techniques were used to characterize the pore-throat radius of the sandstone core, and X-ray three-dimensional CT scanning was used to quantitatively characterize sandstone pores larger than 9 μm. The results show that, ①the sandstone particles of medium-grained sandstone are larger, and the pore types are mainly residual intergranular pores with a small amount of intergranular dissolved pores, while the particles of fine-grained sandstone are smaller, and the intergranular pores are mostly filled with clay minerals, secondary dissolution intergranular pores, and a smaller degree of pore development.; ②The pore throat radius of large pores in medium-grained sandstone ranges from 0.61 to 4.94 μm, with a cumulative distribution frequency of 48%, while in fine-grained sandstone, the pore-throat radius ranges from 0.188 to 0.683 um, with a cumulative distribution frequency of 47%, indicating that medium-grained sandstone has larger pore-throat radius, which are more conducive to groundwater storage and migration.; ③CT scanning shows that the average surface porosity of medium-grained sandstone is 7.081%, and that of fine grained sandstone is 2.032%. The highly developed macropores (equivalent pore diameter > 180 μm) and micropores contribute to a higher surface porosity. Combined with a larger pore throat radius, the medium-grained sandstone presents a higher permeability. The microscopic pore characteristics of the two types of sandstone are consistent with the on-site evaluation result of the water yield propertyof the corresponding aquifer. The research findings can provide a basic reference for the prevention and control of water disasters from the sandstone roof of the Luohe Formation.

  • [1]
    董书宁,姬亚东,王 皓,等. 鄂尔多斯盆地侏罗纪煤田典型顶板水害防控技术与应用[J]. 煤炭学报,2020,45(7):2367−2375.

    DONG Shuning,JI Yadong,WANG Hao,et al. Prevention and control technology and application of roof water disaster in Jurassic coal field of Ordos Basin[J]. Journal of China Coal Society,2020,45(7):2367−2375.
    [2]
    董书宁. 鄂尔多斯盆地煤层典型顶板水害成因与防控技术[M]. 北京: 科学出版社, 2021.
    [3]
    任邓君,孙亚岳,李建阳. 高家堡煤矿煤层顶板水水化学特征及其水害防治技术[J]. 煤田地质与勘探,2019,47(S1):26−31.

    REN Dengjun,SUN Yayue,LI Jianyang. Hydrochemical characteristics and control of water hazard from coal seam roof in Gaojiabao coal mine[J]. Coal Geology & Exploration,2019,47(S1):26−31.
    [4]
    靳德武,刘英锋,王甜甜. 巨厚砂岩含水层下厚煤层综放减水开采技术[J]. 煤炭科学技术,2020,48(9):88−95.

    JIN Dewu,LIU Yingfeng,WANG Tiantian. Water-reducing mining technology for fully mechanized top coal caving mining in thick coal seams under ultra thick sandstone aquifer[J]. Coal Science and Technology,2020,48(9):88−95.
    [5]
    李超峰,虎维岳,刘英锋. 洛河组含水层垂向差异性研究及保水采煤意义[J]. 煤炭学报,2019,44(3):847−856.

    LI Chaofeng,HU Weiyue,LIU Yingfeng. Vertical hydrogeological characteristics of Luohe aquifer and its significance of water-preserved coal mining[J]. Journal of China Coal Society,2019,44(3):847−856.
    [6]
    郭小铭,董书宁. 深埋煤层开采顶板基岩含水层渗流规律及保水技术[J]. 煤炭学报,2019,44(3):804−811.

    GUO Xiaoming,DONG Shuning. Seepage law of bedrock aquifer and water-preserved mining technology in deep coal seam mining[J]. Journal of China Coal Society,2019,44(3):804−811.
    [7]
    刘英锋,王世东,王晓蕾. 深埋特厚煤层综放开采覆岩导水裂缝带发育特征[J]. 煤炭学报,2014,39(10):1970−1976.

    LIU Yingfeng,WANG Shidong,WANG Xiaolei. Development characteristics of water flowing fractured zone of overburden deep buried extra thick coal seam and fully-mechanized caving mining[J]. Journal of China Coal Society,2014,39(10):1970−1976.
    [8]
    徐拴海,邢龙龙,王国强,等. 超细水泥浆液在微裂隙岩体中的注浆试验研究[J]. 中国安全生产科学技术,2014,10(6):96−102.

    XU Shuanhai,XING Longong,WANG Guoqiang,et al. Experimental research on grouting of superfine cement slurry in micro-fissured rock body[J]. Journal of Safety Science and Technology,2014,10(6):96−102.
    [9]
    杜文斌,郑杨帆,耿明奇. 彬长矿区高家堡井田白垩系下统富水性及水力连通试验分析[J]. 中国煤炭地质,2015,27(5):38−41.

    DU Wenbin,ZHENG Yangfan,GENG Mingqi. Analysis of Lower Cretaceous Water Yield Property and Hydraulic Connectivity Test in Gaojiabu Minefield, Binchang Mining Area[J]. Coal Geology of China,2015,27(5):38−41.
    [10]
    孙福勋. 巨厚含水层下煤层顶板突水机理及水害危险性预测—以高家堡煤矿为例[D]. 青岛: 山东科技大学, 2017.

    SUN Fuxun. Mechanism of water inrush from coal seam roof under extremely thick aquifer and prediction of water hazard -- a case study of Gaojiapu coal mine[D]. Qingdao: Shandong University of Science and Technology, 2017.
    [11]
    李金龙,张允强,徐新启,等. 高家堡煤矿煤层顶板注浆加固堵水技术探讨[J]. 煤田地质与勘探,2019,47(S1):20−25.

    LI Jinlong,ZHANG Yunqiang,XU Xinqi,et al. Reinforcement and water plugging technology of roof grouting in Gaojiabao coal mine[J]. Coal Geology & Exploration,2019,47(S1):20−25.
    [12]
    杨 静. 地面水平定向钻孔注浆封堵覆岩导水裂隙的合理层位研究[D]. 徐州: 中国矿业大学, 2019.

    YANG Jing. Study on reasonable horizon of grouting of horizontal directional borehole to seal water flowing fractured [D]. Xuzhou: China University of Mining and Technology, 2019.
    [13]
    李超峰. 采煤工作面顶板巨厚层状含水层涌水量预测研究[D]. 北京: 煤炭科学研究总院, 2019.

    LI Chaofeng. Study on prediction of water inflow of huge thick layered aquifer in coal face roof [D]. Beijing: China Coal Research Institute, 2019.
    [14]
    林 磊. 高家堡煤矿洛河组砂岩沉积控水规律研究[D]. 西安: 西安科技大学, 2020.

    LIN Lei. Study on water control law of Luohe formation sandstone sedimentation in Gaojiapu coal mine [D]. Xian: Xi'an University of science and technology, 2020.
    [15]
    杜二宝. 主含水层下特厚煤层短壁协调充填开采覆岩变形与控制研究. [D]. 徐州: 中国矿业大学, 2021.

    DU Erbao. Research on deformation and control of overlying strata in coordinated filling mining of short-walled extra-thick coal seam under main aquifer [D] Xuzhou: China University of Mining and Technology, 2021.
    [16]
    王璟明,肖佃师,卢双舫,等. 吉木萨尔凹陷芦草沟组页岩储层物性分级评价[J]. 中国矿业大学学报,2020,49(1):172−183.

    WANG Jingming,XIAO Dianshi,LU Shuangfang,et al. Classification evaluation of shale oil reservoir physical properties in Lucaogou formation, Jimsar sag[J]. Journal of China University of Mining & Technology,2020,49(1):172−183.
    [17]
    肖佃师,赵仁文,杨 潇,等. 海相页岩气储层孔隙表征, 分类及贡献[J]. 石油与天然气地质,2019,40(6):1215−1225.

    XIAO Dianshi,ZHAO Renwen,YANG Xiao,et al. Characterization, classification and contribution of marine shale gas reservoirs[J]. Oil & Gas Geology,2019,40(6):1215−1225.
    [18]
    孔星星,肖佃师,蒋 恕,等. 联合高压压汞和核磁共振分类评价致密砂岩储层-以鄂尔多斯盆地临兴区块为例[J]. 天然气工业,2020,40(3):38−47.

    KONG Xingxing,XIAO Dianshi,JIANG Shu,et al. Application of the combination of high-pressure mercury injection and nuclear magnetic resonance to the classification and evaluation of tight sandstone reservoirs: A case study of the Linxing Block in the Ordos Basin[J]. Natural Gas Industry,2020,40(3):38−47.
    [19]
    苏玉亮,李新雨,李 蕾,等. 基于核磁共振可视化试验的致密气藏气水两相渗流机制[J]. 中国石油大学学报:自然科学版,2021,45(5):104−112.

    SU Yuliang,LI Xinyu,LI Lei,et al. Gas-water two-phase percolation mechanism in tight gas reservoirs based on NMR visualization experiment[J]. Journal of China University of Petroleum(Edition of Natural Science),2021,45(5):104−112.
    [20]
    张宪国,张 涛,刘玉从,等. 深层低渗-致密气层孔喉参数核磁共振测井定量解释[J]. 中国矿业大学学报,2020,49(5):941−950.

    ZHANG Xianguo,ZHANG Tao,LIU Yucong,et al. Quantitative interpretation of pore-throat parameter in deep low permeability- tight gas reservoir with NMR logging[J]. Journal of China University of Mining & Technology,2020,49(5):941−950.
    [21]
    刘一楠,刘 勇,辛福东,等. 压汞实验对低阶煤表征的适用性分析及校正方法[J]. 煤田地质与勘探,2020,48(4):118−125.

    LIU Yinan,LIU Yong,XIN Fudong,et al. Applicability of mercury injection test to the characterization of low rank coal and its correction method[J]. Coal Geology & Exploration,2020,48(4):118−125.
    [22]
    杨 明,柳 磊,刘佳佳,等. 中阶煤孔隙结构的氮吸附-压汞-核磁共振联合表征研究[J]. 煤炭科学技术,2021,49(5):67−74.

    YANG Ming,LIU Lei,LIU Jiajia,et al. Study on joint characterization of pore structure of middle-rank coal by nitro-gen adsorption-mercury intrusion-NMR[J]. Coal Science and Technology,2021,49(5):67−74.
    [23]
    王登科,曾凡超,王建国,等. 显微工业CT的受载煤样裂隙动态演化特征与分形规律研究[J]. 岩石力学与工程学报,2020,39(6):1165−1174.

    WANG Dengke,ZENG Fanchao,WANG Jianguo,et al. Dynamic evolution characteristics and fractal law of loaded coal fractures by micro industrial CT[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(6):1165−1174.
    [24]
    付 裕,陈 新,冯中亮. 基于CT扫描的煤岩裂隙特征及其对破坏形态的影响[J]. 煤炭学报,2020,45(2):568−578.

    FU Yu,CHENG Xin,FENG Zhongliang. Characteristics of coal-rock fractures based on CT scanning and its influence on failure modes[J]. Journal of China Coal Society,2020,45(2):568−578.
    [25]
    柳昭星,董书宁,南生辉,等. 邯邢矿区中奥灰顶部空隙特征显微CT分析[J]. 采矿与安全工程学报,2021,38(2):343−352.

    LIU Zhaoxing,DONG Shuning,NAN Shenghui,et al. Micro-CT analysis of void characteristics at the top of middle ordovician limestone in Hanxing mining area[J]. Journal of Mining and Safety Engineering,2021,38(2):343−352.
    [26]
    吴洁璞,张红玲,周晓峰,等. 鄂尔多斯盆地低渗透岩心水测渗透率和气测渗透率关系研究[J]. 西安石油大学学报(自然科学版),2017,32(1):52−56,63.

    WU Jiepu,ZHANG Hongling,ZHOU Xiaofeng,et al. Study on relationship between water measuring permeability and gas measuring permeability of low permeability sandstone cores in Ordos Basin[J]. Journal of Xi’an Shiyou University ( Natural Science Edition),2017,32(1):52−56,63.
    [27]
    李爱芬,任晓霞,王桂娟,等. 核磁共振研究致密砂岩孔隙结构的方法及应用[J]. 中国石油大学学报(自然科学版),2015,39(6):92−98.

    LI Aifen,REN Xiaoxia,WANG Guijuan,et al. Characterization of pore structure of low permeability reservoirs using a nuclear magnetic resonance method[J]. Journal of China University of Petroleum,2015,39(6):92−98.
  • Related Articles

    [1]PANG Tao, JIANG Zaibing, WANG Zhengxi, LIU Xiugang, LI Haozhe. Influence of natural weak surface on extension of multiple fractures during fracturing of gas extraction horizontal wells[J]. COAL SCIENCE AND TECHNOLOGY, 2025, 53(S1): 130-138. DOI: 10.12438/cst.2023-2000
    [2]LI Yanhe. Surface well partition gas extraction technology system and engineering practice[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(3): 100-108. DOI: 10.13199/j.cnki.cst.2022-1829
    [3]ZHANG Zhigang, LI Rifu. Research and application of “mining-gob”surface well extraction under repeated disturbance in coal mines[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(10): 91-97.
    [4]MENG Zhaoping, LI Guofu, YANG Yu, LI Chao, QIAO Yuandong. Study on key technology for surface extraction of coalbed methane in coal mine goaf from Sihe Wells Area,Jincheng[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(1): 240-247. DOI: 10.13199/j.cnki.cst.2021.01.020
    [5]SUN Dongling, FU Junhui, SUN Haitao, LI Rifu, WANG Ran. Study and application of gas surface well broken protection in mining area[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (6).
    [6]SUN Dong-ling SUN Hai-tao, . Application Prospect Analysis on Gas Drainage Technology of Surface Well in Mining Area[J]. COAL SCIENCE AND TECHNOLOGY, 2014, (6).
    [7]Study on Features Comparison and Mechanism of Methane Adsorbed by Coal Before and After Solvent Extraction[J]. COAL SCIENCE AND TECHNOLOGY, 2013, (3).
    [8]Study on Supercritical Methanol Extraction Experiment to Lignite[J]. COAL SCIENCE AND TECHNOLOGY, 2012, (12).
    [9]Study and Application of Gas Drainage Technology to High Level Gateway with Two Utilizations[J]. COAL SCIENCE AND TECHNOLOGY, 2012, (8).
    [10]Gas Drainage Technology in Fully Mechanized Coal Mining Face in Jiaojiazhai Mine[J]. COAL SCIENCE AND TECHNOLOGY, 2011, (5).
  • Cited by

    Periodical cited type(11)

    1. 蔡雨初,李树刚,孔祥国,杨送瑞,季鹏飞,和递. 三轴条件下递增瓦斯压力和煤样孔隙结构对瓦斯解吸-渗流影响研究. 西安科技大学学报. 2025(02): 305-316 .
    2. 降文萍,张群,吴静. 煤矿区煤层气分段压裂水平井辅助消突效果评价方法及应用. 煤炭工程. 2025(04): 138-144 .
    3. 王军. 基于采空区地面井抽采数据评估煤矿卸压开采性能研究. 山西化工. 2024(08): 223-225 .
    4. 赵军利. 地面L型井顶板分段压裂技术在突出煤层中的应用. 煤矿现代化. 2023(02): 30-33 .
    5. 张超,范富槐,李树刚,翟成,江丙友,杨朴超,曾祥真. 基于微胶囊技术的瓦斯抽采钻孔密封材料研究. 煤炭科学技术. 2023(04): 72-79 . 本站查看
    6. 王媛彬,李媛媛,韩骞,李瑜杰,周冲. 基于PCA-BO-XGBoost的矿井回采工作面瓦斯涌出量预测. 西安科技大学学报. 2022(02): 371-379 .
    7. 程士宜,李文超. 改善松软煤层抽采孔砂岩孔壁力学行为研究. 煤矿安全. 2022(10): 243-247 .
    8. 文建东,苗在全,高璐,荆士杰. 地面钻孔抽采对采空区自燃“三带”的影响研究. 能源与环保. 2022(12): 301-306 .
    9. 龙红军. 屯兰煤矿地面井压裂抽采瓦斯效果及影响范围. 煤炭科技. 2022(06): 86-90+95 .
    10. 吴向. 王峰煤矿地面L型井压裂抽采瓦斯工程实践. 内蒙古煤炭经济. 2022(24): 25-27 .
    11. 张尧兵. 工作面地面井瓦斯治理技术的可行性论证. 河南科技. 2021(12): 81-83 .

    Other cited types(2)

Catalog

    Article views (103) PDF downloads (71) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return