Advance Search
LI Donghui,LI Dongyin,WANG Shen,et al. Safe passing critical criterion for drawn top-coal on rear conveyor and accurate control approach for drawing opening dimension[J]. Coal Science and Technology,2023,51(9):251−260. DOI: 10.13199/j.cnki.cst.2022-1010
Citation: LI Donghui,LI Dongyin,WANG Shen,et al. Safe passing critical criterion for drawn top-coal on rear conveyor and accurate control approach for drawing opening dimension[J]. Coal Science and Technology,2023,51(9):251−260. DOI: 10.13199/j.cnki.cst.2022-1010

Safe passing critical criterion for drawn top-coal on rear conveyor and accurate control approach for drawing opening dimension

Funds: 

National Natural Science Foundation of China (52204090); Key Research and Promotion Project of Henan Province (Science and Technology Tackling) (212102210230); National Energy Group Key Project "5G+Industrial Internet" Unmanned Mine Key Technology Research and Development and Engineering Demonstration Funding Project (GJNY-21-25)

More Information
  • Received Date: August 09, 2022
  • Available Online: July 07, 2023
  • Fully mechanized top coal caving technology has become the mainstream way of high yield and high efficiency mining in extra thick coal seams in China. The accurate control of the top-coal drawing mechanical parts is of significance to realize the automation and intellectualization of top-coal caving mining. Mastering the spatial motion law of the coal caving mechanism is the premise of accurate control. The immediate shape of the hydraulic support coal caving mechanism is jointly controlled by the support height, support attitude, extension length of the plug plate, and the relative position of the rear scraper, which has an important impact on the coal caving opening and the coal-passing height of the support. This study establishes a 3–D numerical model of four- legs top-coal caving hydraulic support (No. ZF15000/27.5/42) by using the finite element software ABAQUS. Hinge and translator connectors are used to simulate the rotation behavior and expansion-contraction behavior for hinge point and plug plate, respectively. Taking the support height (H), tail beam swing angle (α), and the plug plate extension length (l) as control variables, the spatial motion law of the hinge point between shield beam and tail beam and the end of the plug plate are modeled. The critical security equation for evaluating collision between top-coal drawing mechanical parts and rear scraper is obtained by using Levenberg-Marquardt fitting iteration method. A database for describe the calibration relationship, which contains the end coordination of plug plate, the dimension of the top-coal drawing opening, and H, α, and l, is established. The sensor type and installation position for sensing and controlling the attitude of the top-coal drawing mechanism are recommended, the approach for calculating the tail beam angle based on travel sensor is derived. Through field verification of top-coal drawing opening width, it is concluded that the relative error between measured value and calculated value meets the requirements for accurate control of top-coal drawing mechanism. The approach for controlling the top-coal drawing opening dimension is proposed, which has been successfully applied in the field.

  • [1]
    王国法,徐亚军,张金虎,等. 煤矿智能化开采新进展[J]. 煤炭科学技术,2021,49(1):1−10.

    WANG Guofa,XU Yajun,ZHANG Jinhu,et al. New development of intelligent mining in coal mines[J]. Coal Science and Technology,2021,49(1):1−10.
    [2]
    马 英. 综采工作面三机成套技术[J]. 辽宁工程技术大学学报(自然科学版),2013,32(5):672−675.

    MA Ying. Three machines support technology in fully mechanized face[J]. Journal of Liaoning Technical University(Natural Science ),2013,32(5):672−675.
    [3]
    黄炳香,刘长友,程庆迎. 低位综放开采顶煤放出率与含矸率的关系[J]. 煤炭学报,2007,32(8):789−793.

    HUANG Bingxiang,LIU Changyou,CHENG Qingying. Relation between top-coal drawing ratio and refuse content for fully mechanized top coal carving[J]. Journal of China Coal Society,2007,32(8):789−793.
    [4]
    曹善华,王 丽,李加林,等. 一种薄煤层综采设备的特点及开采效果[J]. 煤矿开采,2011,16(5):63−64, 70. doi: 10.3969/j.issn.1006-6225.2011.05.021

    CAO Shanhua,WANG Li,LI Jialin,et al. Characteristic and mining effect of a full-mechanized mining equipment for thin coal-seam[J]. Coal Mining Technology,2011,16(5):63−64, 70. doi: 10.3969/j.issn.1006-6225.2011.05.021
    [5]
    胡相捧,刘新华. 初撑阶段的支架位姿与驱动千斤顶一一映射及调整策略[J]. 采矿与安全工程学报,2021,38(4):666−677.

    HU Xiangpeng,LIU Xinhua. One-to-one mapping between powered support posture and actuating rams and its adjustment strategy during setting stage[J]. Journal of Mining & Safety Engineering,2021,38(4):666−677.
    [6]
    章之燕. 大倾角综放液压支架稳定性动态分析和防倒防滑措施[J]. 煤炭学报,2007,32(7):705−709. doi: 10.3321/j.issn:0253-9993.2007.07.007

    ZHANG Zhiyan. Dynamic analysis on stability of hydraulic powered support in deep inclined fully mechanized wall and prevention slips measures[J]. Journal of China Coal Society,2007,32(7):705−709. doi: 10.3321/j.issn:0253-9993.2007.07.007
    [7]
    张金虎,王国法,杨正凯,等. 高韧性较薄直接顶特厚煤层四柱综放支架适应性和优化研究[J]. 采矿与安全工程学报,2018,35(6):1164−1169, 1176.

    ZHANG Jinhu,WANG Guofa,YANG Zhengkai,et al. Adaptability analysis and optimization study of four-leg shield caving support in ultra thick seam with high toughness and thinner immediate roof[J]. Journal of Mining & Safety Engineering,2018,35(6):1164−1169, 1176.
    [8]
    徐亚军. 液压支架顶梁外载作用位置理论研究与应用[J]. 煤炭科学技术,2015,43(7):102−106.

    XU Yajun. Theoretical study and application on external load function location of canopy in hydraulic powered support[J]. Coal Science and Technology,2015,43(7):102−106.
    [9]
    王国法,庞义辉. 特厚煤层大采高综采综放适应性评价和技术原理[J]. 煤炭学报,2018,43(1):33−42.

    WANG Guofa,PANG Yihui. Full-mechanized coal mining and caving mining method evaluation and key technology for thick coal seam[J]. Journal of China Coal Society,2018,43(1):33−42.
    [10]
    庞义辉,王国法. 基于煤壁“拉裂–滑移”力学模型的支架护帮结构分析[J]. 煤炭学报,2017,42(8):1941−1950.

    PANG Yihui,WANG Guofa. Hydraulic support protecting board analysis based on rib spalling “tensile cracking-sliding” mechanical model[J]. Journal of China Coal Society,2017,42(8):1941−1950.
    [11]
    庞义辉,王国法. 大采高液压支架结构优化设计及适应性分析[J]. 煤炭学报,2017,42(10):2518−2527.

    PANG Yihui,WANG Guofa. Hydraulic support with large mining height structural optimal design and adaptability analysis[J]. Journal of China Coal Society,2017,42(10):2518−2527.
    [12]
    黄庆享,徐 璟,杜君武. 浅埋煤层大采高工作面支架合理初撑力确定[J]. 采矿与安全工程学报,2019,36(3):491−496.

    HUANG Qingxiang,XU Jing,DU Junwu. Determination of support setting load of large-mining-height longwall face in shallow coal seam[J]. Journal of Mining & Safety Engineering,2019,36(3):491−496.
    [13]
    尹希文,徐 刚,刘前进,等. 基于支架载荷的矿压双周期分析预测方法[J]. 煤炭学报,2021,46(10):3116−3126.

    YIN Xiwen,XU Gang,LIU Qianjin,et al. Method of double-cycle analysis and prediction for rock pressure based on the support load[J]. Journal of China Coal Society,2021,46(10):3116−3126.
    [14]
    张 强,武中亚,杜二宝,等. 充填采煤液压支架工作阻力设计方法研究[J]. 采矿与安全工程学报,2020,37(1):118−127.

    ZHANG Qiang,WU Zhongya,DU Erbao,et al. Working resistance design method of backfilling shield[J]. Journal of Mining & Safety Engineering,2020,37(1):118−127.
    [15]
    谢生荣,王 龙,陈冬冬,等. 四柱支撑掩护式支架空间承载特性研究[J]. 工程科学与技术,2020,52(1):56−65.

    XIE Rongsheng,WANG Long,CHEN Dongdong,et al. Spatial load-bearing characteristics of four-pillar chock-shield support[J]. Advanced Engineering Sciences,2020,52(1):56−65.
    [16]
    李 伟. 综放开采智能化控制系统研发与应用[J]. 煤炭科学技术,2021,49(10):128−135.

    LI Wei. Research and application of intelligent control system for full-mechanized caving mining[J]. Coal Science and Technology,2021,49(10):128−135.
    [17]
    王树仁,王金安,戴 涌. 折线型综放面开采顶煤运移破坏规律及支架受力特征的数值模拟研究[J]. 岩石力学与工程学报,2004(S1):4531−4534. doi: 10.3321/j.issn:1000-6915.2004.z1.057

    WANG Shuren,WANG Jin’an,DAI Yong. Numerical analysis on movement and failure of coal and stress condition of support structures in mechanized top-coal caving in steep thick seam[J]. Chinese Journal of Rock Mechanics and Engineering,2004(S1):4531−4534. doi: 10.3321/j.issn:1000-6915.2004.z1.057
    [18]
    何柏岩,孙阳辉,聂 锐,等. 矿用刮板输送机圆环链传动系统动力学行为研究[J]. 机械工程学报,2012,48(17):50−56. doi: 10.3901/JME.2012.12.050

    HE Baiyan,SUN Yanghui,NIE Rui,et al. Dynamic behavior analysis on the ring chain transmission system of an armoured face conveyor[J]. Journal of Mechanical Engineering,2012,48(17):50−56. doi: 10.3901/JME.2012.12.050
    [19]
    谢 苗,毛 君,许文馨. 重型刮板输送机故障载荷工况与结构载荷工况的动力学仿真研究[J]. 中国机械工程,2012,23(10):1200−1204. doi: 10.3969/j.issn.1004-132X.2012.10.015

    XIE Miao,MAO Jun,XU Wenxin. Dynamics simulation of heavy scraper conveyor in working condition of failure-load and structural load[J]. China Mechanical Engineering,2012,23(10):1200−1204. doi: 10.3969/j.issn.1004-132X.2012.10.015
    [20]
    JUAREZ-FERRERAS R,GONZALEZ-NICIEZA C,MENENDEZ-DIAZ A,et al. Measurement and analysis of the roof pressure on hydraulic props in longwall[J]. International Journal of Coal Geology,2008,75(1):49−62. doi: 10.1016/j.coal.2008.01.007
    [21]
    王学文,崔 涛,谢嘉成,等. 考虑销轴间隙的液压支架运动虚拟仿真方法[J]. 煤炭科学技术,2021,49(2):186−193.

    WANG Xuewen,CUI Tao,XIE Jiacheng,et al. Virtual simulation method of hydraulic support motion considering pin shaft clearance[J]. Coal Science and Technology,2021,49(2):186−193.
    [22]
    万丽荣,陈 博,杨 扬,等. 单颗粒煤岩冲击放顶煤液压支架尾梁动态响应分析[J]. 煤炭学报,2019,44(9):2905−2913.

    WAN Lirong,CHEN Bo,YANG Yang,et al. Dynamic response of single coal-rock impacting tail beam of top coal caving hydraulic support[J]. Journal of China Coal Society,2019,44(9):2905−2913.
    [23]
    齐 威. ABAQUS 6.14超级学习手册[M]. 北京: 人民邮电出版社, 201606.673.
    [24]
    PRESS W H,TEUKOLSKY S A,VETTERLING W T,et al. Numerical recipes in C: The art of scientific computing. second edition[J]. IEEE Concurrency,2002,6(4):79−79.
  • Related Articles

    [1]Xi Jian Zhang Yinghua Huang Zhian Gao Yukun, . Study on automatic control system of mine refuge chamber[J]. COAL SCIENCE AND TECHNOLOGY, 2016, (3).
    [2]Liu Qing Niu Jianfeng Shi Tongjun, . Design on automatic coal refuse backfill and tamping control system of fully-mechanized coal mining face .[J]. COAL SCIENCE AND TECHNOLOGY, 2015, (11).
    [3]Design on Automatic Pressure Balanced Fire Prevention and Control System in Mine[J]. COAL SCIENCE AND TECHNOLOGY, 2012, (4).
  • Cited by

    Periodical cited type(22)

    1. 许波,杨鹏军. 深部矿区巷道围岩力学参数测试及反演研究. 采矿技术. 2024(01): 1-5 .
    2. 张杰,孙建平,何义峰,张一铭,庞海波,武浩昊,张建辰,彭冰. 近距离煤层底板应力分布规律及巷道布置研究. 煤炭科学技术. 2024(08): 11-22 . 本站查看
    3. 纪金池,董显业. 空间交叉型巷道围岩控制技术研究. 煤炭技术. 2024(12): 98-101 .
    4. 王鹏,王虎伟,王帅,王鹏程. 孤岛工作面回采巷道围岩破坏机理及差异化控制技术. 金属矿山. 2024(12): 96-105 .
    5. 潘忠德,张珂,顾成富,张启航. 近距离煤层采动影响及巷道合理位置研究. 煤炭技术. 2023(04): 43-47 .
    6. 朱宗奎,鲁岩. 基于锚固应力叠加控制原理的多层支护数值模拟实验研究. 实验技术与管理. 2023(04): 125-132 .
    7. 贺相乾. 高应力煤巷围岩多维预应力锚索桁架应用研究. 山西冶金. 2023(04): 207-208 .
    8. 王向来,曹晓杰,温颖远. 动载扰动开切巷支护设备及工艺改造研究. 煤矿机械. 2023(08): 103-106 .
    9. 任帅,鲁德超,罗勇,肖殿才. 滞弹性应变恢复法地应力测量及地质信息可视化研究. 采矿技术. 2023(05): 46-50 .
    10. 娄杰,张迎春,温慧,杨玉顺,韦四江. 采动影响下全煤回采巷道围岩稳定性模拟研究. 能源与环保. 2023(09): 257-265 .
    11. 陈朋磊,陈鑫源,刘欢欢,王丹,梁洁,杨景景. 近距离煤层回采巷道合理位置确定应用研究. 能源与环保. 2022(05): 262-269 .
    12. 高玉军,康庆涛,殷帅峰. 条带煤柱下近距离煤层巷道围岩控制. 华北科技学院学报. 2022(02): 26-31 .
    13. 冯根民. 台头煤矿3206工作面动压巷道围岩控制技术与试验. 山东煤炭科技. 2022(05): 24-26 .
    14. 姚直书,王晓云,王要平,程桦,唐彬,冯依赞,徐火祥,刘小虎,包蓓蓓,方玉. 煤矿TBM掘进巷道围岩时效变形分析及支护参数优化研究. 煤炭工程. 2022(07): 31-37 .
    15. 李桂臣,杨森,孙元田,许嘉徽,李菁华. 复杂条件下巷道围岩控制技术研究进展. 煤炭科学技术. 2022(06): 29-45 . 本站查看
    16. 石文朋,魏宝贞,李楠,谭浩,陈兆生. 缩面影响下辅助巷道变形特征及控制技术. 煤矿现代化. 2022(05): 1-4 .
    17. 李松峰,陈军锋. 高地应力巷道围岩变形控制方法. 煤炭技术. 2022(10): 33-35 .
    18. 陈康,杨张杰,王福海,王威,王庆牛. 富水弱胶结顶板巷道支护优化设计研究. 煤炭工程. 2022(11): 79-83 .
    19. 郑光辉,刘宇飞,吉格买提·吉布森. 东沟煤矿浅埋煤层群采空区下巷道最佳布置. 煤矿安全. 2022(12): 192-200 .
    20. 杨鹏,马平,赵俊达. 高强度开采条件下煤炭巷道锚杆支护技术. 煤炭工程. 2022(S1): 44-48 .
    21. 王伟,弓仲标. 近距离煤层群煤柱下开采动压巷道围岩变形规律及控制. 煤炭科学技术. 2022(S2): 143-152 . 本站查看
    22. 卞涛,陆浩. 浅埋近距离厚煤层开采对上覆采空区影响规律. 煤炭科学技术. 2021(S2): 40-45 . 本站查看

    Other cited types(4)

Catalog

    Article views (97) PDF downloads (36) Cited by(26)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return