LI Qingwen,ZENG Xinggang,ZHANG Xiangdong,et al. Mesoscopic study on the effect of CFRP layers on the mechanical properties of coal circular-columns[J]. Coal Science and Technology,2023,51(8):73−85
. DOI: 10.13199/j.cnki.cst.2022-0976Citation: |
LI Qingwen,ZENG Xinggang,ZHANG Xiangdong,et al. Mesoscopic study on the effect of CFRP layers on the mechanical properties of coal circular-columns[J]. Coal Science and Technology,2023,51(8):73−85 . DOI: 10.13199/j.cnki.cst.2022-0976 |
In order to study the effect of CFRP layers on the mechanical properties of coal cylinders. A discrete-continuous coupled meso-mechanical numerical model of CFRP passively confined coal cylinders was developed using a three-dimensional FLAC-PFC coupling method. The validity of the model was verified with experimental data of 0-2 layers of CFRP passively confined coal cylinders. On this basis, studies of the influence of 3-7 layers on mechanical properties and energy evolution of CFRP confined coal cylinders was carried out. The results show that the yield limit and the peak of the coal cylinders gradually coincide with the increase of CFRP layers, showing a state of yielding or failure without warning. With the increase of CFRP layers, the increment in the peak strength of coal cylinders first increases and then decreases. A function is obtained to characterize the evolution of the peak strength increment of CFRP confined coal cylinders under different layers. The increment in the peak strain shows a behavior of first increasing and then decreasing, and then increasing and decreasing again. When the elastic strain energy is constant, the axial strain of the coal cylinders has no correlation with CFRP layers, but its peak strain and ultimate strain both increase with the increase of CFRP layers. The dissipative energy conversion ratio at peak point increases first and then decreases with the increase of CFRP layers. A function is established to characterize the evolution of the dissipative energy conversion ratio of CFRP confined coal cylinders with different layers. The ductility characteristics of stress-strain curves, peak strength increment, peak strain increment, dissipative energy conversion ratio and total energy increment of coal cylinders are considered comprehensively, and taking into account the principles of economic cost and winding level, the three layers are determined as the optimal winding layers for CFRP confined coal circular-columns.
[1] |
ZHAO T B,GUO W Y,TAN Y L,et al. Case studies of rock bursts under complicated geological conditions during multi-seam mining at a depth of 800m[J]. Rock Mechanics and Rock Engineering,2018,51(5):1539−1564. doi: 10.1007/s00603-018-1411-7
|
[2] |
ZHU W B,CHEN L,ZHOU Z L,et al. Failure propagation of pillars and roof in a room and pillar mine induced by longwall mining in the lower seam[J]. Rock Mechanics and Rock Engineering,2019,52(4):1193−1209. doi: 10.1007/s00603-018-1630-y
|
[3] |
ZHANG C W,JIN Z X,FENG G R,et al. Double peaked stress–strain behavior and progressive failure mechanism of encased coal pillars under uniaxial compression[J]. Rock Mechanics and Rock Engineering,2020,53(7):3253−3266. doi: 10.1007/s00603-020-02101-7
|
[4] |
POULSEN B A,ADHIKARY D P. A numerical study of the scale effect in coal strength[J]. International Journal of Rock Mechanics and Mining Sciences,2013,63:62−71. doi: 10.1016/j.ijrmms.2013.06.006
|
[5] |
PRASSETYO S H,IRNAWAN M A,SIMANGUNSONG G M,et al. New coal pillar strength formulae considering the effect of interface friction[J]. International Journal of Rock Mechanics and Mining Sciences,2019,123:104102. doi: 10.1016/j.ijrmms.2019.104102
|
[6] |
王 波,谷长宛,王 军,等. 对穿锚索加固作用下沿空掘巷留设煤柱承压性能试验研究[J]. 中国矿业大学学报,2020,49(2):262−270.
WANG Bo,GU Changwan,WANG Jun,et al. Bearing capacity experimental study of coal pillar in the gob-side entry driving under the reinforcement of inflatable lock-type anchor[J]. Journal of China University of Mining and Technology,2020,49(2):262−270.
|
[7] |
赵国贞,马占国,孙 凯,等. 小煤柱沿空掘巷围岩变形控制机理研究[J]. 采矿与安全工程学报,2010,27(4):517−521. doi: 10.3969/j.issn.1673-3363.2010.04.013
ZHAO Guozhen,MA Zhanguo,SUN Kai,et al. Research on deformation controlling mechanism of the narrow pillar of roadway driving along next goaf[J]. Journal of Mining and Safety Engineer-ing,2010,27(4):517−521. doi: 10.3969/j.issn.1673-3363.2010.04.013
|
[8] |
ZHOU N,LI M,ZHANG J X,et al. Roadway backfill method to prevent geohazards induced by room and pillar mining: a case study in Changxing coal mine, China[J]. Natural Hazards and Earth System Sciences,2016,16(12):2473−2484. doi: 10.5194/nhess-16-2473-2016
|
[9] |
陈绍杰,张俊文,尹大伟,等. 充填墙提升煤柱性能机理与数值模拟研究[J]. 采矿与安全工程学报,2017,34(2):268−275.
CHEN Shaojie,ZHANG Junwen,YIN Dawei,et al. Mechanism and numerical simulation of filling walls improving performance of coal pillar[J]. Journal of Mining and Safety Engineering,2017,34(2):268−275.
|
[10] |
张洪伟,万志军,张 源,等. 工作面顺序接续下综放沿空掘巷窄煤柱稳定性控制[J]. 煤炭学报,2021,46(4):1211−1219.
ZHANG Hongwei,WAN Zhijun,ZHANG Yuan,et al. Stability control of narrow coal pillars in the fully-mechanized gob-side entry during sequenced top coal caving mining[J]. Journal of China Coal Society,2021,46(4):1211−1219.
|
[11] |
杨俊龙,王吉忠,卢世伟,等. FRP非均匀约束海水海砂混凝土方柱轴压性能[J]. 复合材料学报,2022,39(6):2777−2786.
YANG Junlong,WANG Jizhong,LU Shiwei,et al. Axial compressive behavior of FRP nonuniformly wrapped sea-water sea-sand concrete in square columns[J]. Acta Materiae Compositae Sinica,2022,39(6):2777−2786.
|
[12] |
柏佳文,魏 洋,张依睿,等. 新型碳纤维增强复合材料-钢复合管海水海砂混凝土圆柱轴压试验[J]. 复合材料学报,2021,38(9):3076−3085.
BAI Jiawen,WEI Yang,ZHANG Yirui,et al. Axial compression behavior of new seawater and sea sand concrete filled circular carbon fiber reinforced polymer-steel compo-site tube columns[J]. Acta Materiae Compositae Sinica,2021,38(9):3076−3085.
|
[13] |
SHAYANFAR J,BARROS J A O,REZAZADEH M. Generalized analysis-oriented model of FRP confined concrete circular columns[J]. Composite Structures,2021,270:114026. doi: 10.1016/j.compstruct.2021.114026
|
[14] |
DAS A J,MANDAL P K,GHOSH C N,et al. Extraction of locked-up coal by strengthening of rib pillars with FRP-A comparative study through numerical modelling[J]. International Journal of Mining Science and Technology,2017,27(2):261−267. doi: 10.1016/j.ijmst.2017.01.024
|
[15] |
刘洪林, 赵红超, 陈辉, 等. 预应力纤维布加固房柱式采煤工作面遗留煤柱的方法[P]. ZL 201910632413.4, 2021-07-09.
|
[16] |
李庆文, 杨 浩, 董芳红, 等. 一种快速加固小煤柱的FRP装置[P]. ZL 201921478839.0, 2020-04-28.
|
[17] |
XIA Z,YAO Q L,LI X H,et al. Acoustic emission characteristics and energy mechanism of CFRP-jacketed coal specimens under uniaxial compression[J]. Construction and Building Materials,2022,342:127936. doi: 10.1016/j.conbuildmat.2022.127936
|
[18] |
SONG H H,JIANG Y D,ELSWORTH D,et al. Scale effects and strength anisotropy in coal[J]. International Journal of Coal Geology,2018,195:37−46. doi: 10.1016/j.coal.2018.05.006
|
[19] |
田会文, 周 臻, 陆纪平, 等. 纤维增强树脂复合材料约束超高性能混凝土轴压性能的细观数值模拟[J]. 复合材料学报, 2020, 37(7): 1629−1638.
TIAN Huiwen, ZHOU Zhen, LU Jiping, et al. Meso-scale numerical simulation of axial compression performance of fiber reinforced polymer composite-confined ultra-high performance concrete[J]. Acta Materiae Compositae Sinica. 2020, 37(7): 1629−1638.
|
[20] |
ZHANG H,LU C P,LIU B,et al. Numerical investigation on crack development and energy evolution of stressed coal-rock combination[J]. International Journal of Rock Mechanics and Mining Sciences,2020,133:104417. doi: 10.1016/j.ijrmms.2020.104417
|
[21] |
杨 磊,高富强,王晓卿. 破坏程度不同煤体失稳过程红外辐射及裂隙演化特征研究[J]. 岩石力学与工程学报,2020,39(S2):3297−3305.
YANG Lei,GAO Fuqiang,WANG Xiaoqing. Mechanical response and energy partition evolution of coal-rock combinations with different strength ratios[J]. Journal of Rock Mechanics and Engineering,2020,39(S2):3297−3305.
|
[22] |
靖洪文,吴疆宇,尹 乾,等. 动载扰动下深部煤巷冲击冒顶的颗粒流数值模拟研究[J]. 岩石力学与工程学报,2020,39(S2):3475−3487.
JING Hongwen,WU Jiangyu,YIN Qian,et al. Particle flow simulation of rock burst and roof fall of deep coal roadway under dynamic disturbance[J]. Journal of Rock Mechanics and Engineering,2020,39(S2):3475−3487.
|
[23] |
卢志国,鞠文君,高富强,等. 结构性煤体间歇性破坏行为的实验及数值模拟研究[J]. 岩石力学与工程学报,2020,39(5):971−983.
LU Zhiguo,JU Wenjun,GAO Fuqiang,et al. Experimental and numerical simulation research on intermit-tent failure of structural coal[J]. Journal of Rock Mechanics and Engineering,2020,39(5):971−983.
|
[24] |
ZHAO Y F,KONIETZKY H,HERBST M. Damage evolution of coal with inclusions under triaxial compression[J]. Rock Mechanics and Rock Engineering,2021,54(10):5319−5336. doi: 10.1007/s00603-021-02436-9
|
[25] |
TAN X,HU Z B,CAO M,et al. 3D discrete element simulation of a geotextile-encased stone column under uniaxial compression testing[J]. Computers and Geotechnics,2020,126:103769. doi: 10.1016/j.compgeo.2020.103769
|
[26] |
TAN X,Hu Z B,CHEN C F,et al. 3D DEM-FDM coupled analysis of the behavior of an isolated geogrid-encased stone column under axial loading[J]. Journal of Geotechnical and Geoenvironmental Engineering,2021,147(6):04021028. doi: 10.1061/(ASCE)GT.1943-5606.0002516
|
[27] |
崔旭浩,肖 宏. 基于PFC-FLAC耦合的弹性轨枕力学特性分析[J]. 铁道学报,2021,43(5):144−152.
CUI Xuhao,XIAO Hong. Mechanical characteristics analysis of elastic sleeper based on PFC-FLAC coupling method[J]. Journal of Railways,2021,43(5):144−152.
|
[28] |
HE P F,KULATILAKE P H S W,YANG X X,et al. Detailed comparison of nine intact rock failure criteria using poly axial intact coal strength data obtained through PFC3D simulations[J]. Acta Geotechnica,2018,13(2):419−445.
|
[29] |
ZHANG L,REN T,LI X C,et al. Acoustic emission, damage and cracking evolution of intact coal under compressive loads: Experimental and discrete element modelling[J]. Engineering Fracture Mechanics,2021,252:107690. doi: 10.1016/j.engfracmech.2021.107690
|
[30] |
王 刚,王 锐,武猛猛,等. 渗透压-应力耦合作用下煤体常规三轴试验的颗粒流模拟[J]. 岩土力学,2016,37(S1):537−546.
WANG Gang,WANG Rui,WU Mengmeng,et al. Simulation of conventional triaxial test on coal under hydro-mechanical coupling by particle flow code[J]. Rock and Soil Mechanics,2016,37(S1):537−546.
|
[31] |
谭 鑫,曹 明,冯龙健,等. 土工织物包裹碎石桩力学特性的数值模拟研究[J]. 中国公路学报,2020,33(9):136−145. doi: 10.3969/j.issn.1001-7372.2020.09.014
TAN Xin,CAO Ming,FENG LongJian,et al. Numerical study on mechanical behaviors of geotextile wrapped stone column[J]. Chinese Journal of Highways,2020,33(9):136−145. doi: 10.3969/j.issn.1001-7372.2020.09.014
|
[32] |
郭润兰,范雅琼,王广书,等. 基于PFC3D的机床床身用树脂矿物复合材料损伤性能细观研究[J]. 复合材料学报,2022,39(2):834−844.
GUO Runlan,FAN Yaqiong,WANG Guangshu,et al. Meso-scale study on damage performance of resin mineral composite material for machine tool bed based on PFC3D[J]. Journal of Composites,2022,39(2):834−844.
|
[33] |
石 崇, 张 强, 王盛年. 颗粒流(PFC5.0)数值模拟技术及应用[M]. 北京: 中国建筑工业出版社, 2018.
SHI Chong, ZHANG Qiang, WANG Shengnian. Numerical simulation techniques and applications of granular flow[M]. Beijing: China Construction Industry Press, 2018.
|
[34] |
李庆文,胡露露,曹 行,等. CFRP布均匀约束煤圆柱轴压性能[J]. 复合材料学报,2022,39(11):5611−5624.
LI Qingwen,HU Lulu,CAO Hang,et al. Axial compressive behavior of CFRP uniformly wrapped coal in circular columns[J]. Acta Materiae Compositae Sinica,2022,39(11):5611−5624.
|
[35] |
王 涛. FLAC3D数值模拟方法及工程应用[M]. 北京: 中国建筑工业出版社, 2015.
WANG Tao. Numerical simulation methods and engineering applications based on FLAC3D[M]. Beijing: China Construction Industry Press, 2015.
|
[36] |
谭 攀,饶秋华,李 卓,等. 考虑断裂韧度的PFC3D细观参数标定新方法[J]. 中南大学学报(自然科学版),2021,52(8):2849−2866.
TAN Pan,RAO Qiuhua,LI Zhuo,et al. A new method for quantitative determination of PFC3D microscopic parameters considering fracture toughness[J]. Journal of Central South University(Science and Technology),2021,52(8):2849−2866.
|
[37] |
荣浩宇,李桂臣,梁东旭,等. 应力路径影响下高应力岩石力学特性颗粒流模拟[J]. 采矿与安全工程学报,2022,39(1):163−173.
RONG Haoyu,LI Guichen,LIANG Dongxu,et al. Particle flow simulation of mechanical properties of high stress rock under the influence of stress path[J]. Journal of Mining and Safety Engineering,2022,39(1):163−173.
|
[38] |
于利强,姚强岭,徐 强,等. 加载速率影响下裂隙细砂岩裂纹扩展试验及数值模拟研究[J]. 煤炭学报,2021,46(11):3488−3501.
YU Liqiang,YAO Qiangling,XU Qiang,et al. Experimental and numerical simulation study on crack propagation of fractured fine sandstone under the influence of loading rate[J]. Journal of China Coal Society,2021,46(11):3488−3501.
|
[39] |
李明钊,张志刚,葛 涛,等. 玄武岩纤维包裹混凝土圆形柱的抗冲击性能研究[J]. 振动与冲击,2016,35(22):215−220.
LI Mingzhao,ZHANG Zhigang,GE Tao,et al. Experiments on impact behaviors of BFRP confined concrete columns[J]. Vibration and Impact,2016,35(22):215−220.
|
[40] |
WU Y F,ZHOU Y W. Unified strength model based on Hoek-Brown failure criterion for circular and square concrete columns confined by FRP[J]. Journal of Composites for Construction,2010,14(2):175−184. doi: 10.1061/(ASCE)CC.1943-5614.0000062
|
[41] |
李庆文,高森林,胡露露,等. 不同加载速率下非均质煤样能量耗散损伤本构关系[J]. 煤炭学报,2022,47(S1):90−102.
LI Qingwen,GAO Senlin,HU Lulu,et al. Constitutive relation of energy dissipation damage of heterogeneous coal samples under different loading rates[J]. Journal of China Coal Society,2022,47(S1):90−102.
|
[42] |
张 亮,王桂林,雷瑞德,等. 单轴压缩下不同长度单裂隙岩体能量损伤演化机制[J]. 中国公路学报,2021,34(1):24−34.
ZHANG Liang,WANG Guilin,LEI Ruide,et al. Energy damage evolution mechanism of single jointed rock mass with different lengths under uniaxial compression[J]. Chinese Journal of Highways,2021,34(1):24−34.
|
[43] |
尹升华,侯永强,杨世兴,等. 单轴压缩下混合集料胶结充填体变形破坏及能耗特征分析[J]. 中南大学学报(自然科学版),2021,52(3):936−947.
YIN Shenhua,HOU Yongqiang,YANG Shixing,et al. Analysis of deformation failure and energy dissipation of mixed aggregate cemented backfill during uniaxial compression[J]. Journal of Central South University(Science and Technology),2021,52(3):936−947.
|
[44] |
LI P,CAI M F. Energy evolution mechanism and failure criteria of jointed surrounding rock under uniaxial compression[J]. Journal of Central South University,2021,28(6):1857−1874. doi: 10.1007/s11771-021-4735-5
|
[45] |
陈子全,何 川,吴 迪,等. 深埋碳质千枚岩力学特性及其能量损伤演化机制[J]. 岩土力学,2018,39(2):445−456.
CHEN Ziquan,HE Chuan,WU Di,et al. Mechanical properties and energy damage evolution mechanism of deep-buried carbonaceous phyllite[J]. Rock and Soil Mechanics,2018,39(2):445−456.
|
[46] |
周宏元, 于鸿鑫, 王小娟, 等. 玄武岩纤维平纹织物约束建筑固体废弃物颗粒力学性能及吸能特性[J]. 复合材料学报, 2022, 39(2): 695−706.
ZHOU Hongyuan, YU Hongxin, WANG Xiaojuan, et al. Mechanical properties and energy absorption characteristics of basalt fiber plain woven fabric constrained building solid waste particles[J]. Acta Materiae Compositae Sinica. 2022, 39(2): 695−706.
|
[1] | FAN Zhenli, CAO Lutong, ZHANG Fengda, YIN Xiwen, ZHAO Qiuyang, ZHANG Zhiwei. Optimal selection test of material ratio in the top of Ordovician limestone grouting reconstruction[J]. COAL SCIENCE AND TECHNOLOGY, 2025, 53(5): 277-290. DOI: 10.12438/cst.2024-0375 |
[2] | JIANG Bingyou, ZHANG Yuqian, YU Changfei, JI Ben, WANG Haoyu, LIU Zhuang. Prediction of coal dust particle size after spraying dust reduction in roadway based on orthogonal experiment and regression analysis[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(12): 143-153. DOI: 10.12438/cst.2024-0532 |
[3] | WANG Pengfei, WU Gaogao, TIAN Chang, LIU Ronghua, GAO Runze. Structural parameters optimization of internal mixing air atomizing nozzle based on orthogonal experiment[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(9): 129-139. DOI: 10.13199/j.cnki.cst.2022-1446 |
[4] | MIAO Hechao, WANG Hai, WANG Xiaodong, WANG Hao, XU Ganggang. Study on ratio optimization and performance test of fly ash-based impermeable grouting materials[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(9): 230-239. |
[5] | TAO Wenbin, WU Pingping, CHEN Tielin, XIE Changling, ZHAO Huahong, TANG Bin, LI Fanfan. Experimental research on optimization of anchorage bearing characteristics based on bolt pull-out test[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(9): 10-19. |
[6] | LIU Shaowei, WANG Wei, WANG Qiang, JIANG Jinghua, LI Haitao, PENG Haibin. Study on stability of coal pillars of roadway excavated along gob with water in gently inclined coal seam[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(6). |
[7] | SUN Haitao, ZHU Moran, CAO Jie, WEN Guangcai. Orthogonal experimental study on proportioning model construction ofsimilar materials of outburst coal seam[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (8). |
[8] | LIU Xiliang, WANG Mengmeng, WANG Xinyu, YU Jianxin, Guo Jiaqi. Numerical analysis on stability of deep rock roadway based on orthogonal test[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (2). |
[9] | Liu Ruijia Chu Viet Dung Nguyen Viet Tuyen, . Study on cutting resistance model of single plow cutter test based on coal plough[J]. COAL SCIENCE AND TECHNOLOGY, 2016, (6). |
1. |
严红,吴林,李桂臣,宋维斌. 煤矿岩巷TBM快速掘进研究进展与展望. 煤炭工程. 2025(01): 1-7 .
![]() | |
2. |
张风林,唐彬,沈仁为,李宏亮,张鹏涛,程晋轶,刘震宇,侯俊领. TBM掘进煤矿深井巷道支护方案优化实践. 科技资讯. 2024(14): 103-107 .
![]() | |
3. |
王永军,孟凡贞,吕文茂,张垚,赵春虎,钟林华,胡东祥. 深部强矿压矿井煤层覆岩爆破卸压机理研究. 中国矿业. 2024(S2): 325-329 .
![]() | |
4. |
邵文琦,陈大勇,佟治,乔亮,杜浪浪,黄炳香,陈圣贺,高尚占,祁正飞,孙政. 煤矿岩巷掘进技术现状及展望. 中国矿业. 2024(11): 192-205 .
![]() | |
5. |
吕玉柱,孙鹏,王力强. 韩城矿区岩巷快速施工工艺匹配支护优化研究. 陕西煤炭. 2024(12): 173-177 .
![]() | |
6. |
满轲,武立文,刘晓丽,宋志飞,李可娜. 基于CNN-LSTM模型的TBM隧道掘进参数及岩爆等级预测. 煤炭科学技术. 2024(S2): 21-37 .
![]() | |
7. |
张钦,苏金华,慎宏然,胡志飞,徐晓东,李浩,李鹏权,赵春阳,崔宗类. 某矿复杂地层硬岩巷道TBM同步探掘技术研究与实践. 现代矿业. 2023(09): 233-237 .
![]() |