Advance Search
ZENG Qingliang,XU Penghui,MENG Zhaosheng,et al. Dynamic response characteristics analysis of four column chock shield support under impact load[J]. Coal Science and Technology,2023,51(1):437−445. DOI: 10.13199/j.cnki.cst.2022-0975
Citation: ZENG Qingliang,XU Penghui,MENG Zhaosheng,et al. Dynamic response characteristics analysis of four column chock shield support under impact load[J]. Coal Science and Technology,2023,51(1):437−445. DOI: 10.13199/j.cnki.cst.2022-0975

Dynamic response characteristics analysis of four column chock shield support under impact load

Funds: 

National Natural Science Foundation of China (51974170,52104164); Natural Science Foundation of Shandong Province (ZR2020QE103)

More Information
  • Received Date: June 24, 2022
  • Available Online: March 08, 2023
  • The hydraulic support equipment is usually used to support the roof in underground mining. During this process, the support bears frequent impact load, which greatly weakens its dynamic stability. To study the dynamic response characteristics of the support, when it bears the impact load at the top beam and shield beam, the numerical model of the support is established using ADAMS and the equivalent variable stiffness damping system was used to replace the column system. An active static load is applied vertically above the top beam to simulate the roof gravity force, and the impact load is applied downward perpendicular to the top beam and shield beam. Based on the above model, the dynamic response of the key parts of the support, when different impact loads are applied to the top beam and shield beam, and the influence of offset loading on the stability of the support are analyzed. Then, when considering asymmetric bracing conditions, the dynamic characteristics of hydraulic support under impact load are discussed by setting different initial support forces. The results show that when under a single impact load, the load variation coefficient of the front column reaches 1.41, which is the most sensitive to the impact load at the front end of the top beam. When the top beam and shield beam bear the impact load at the same time, the support hinge joint response more violently to the impact load acting on the top beam end and the upper area of the shield beam, and the maximum load change coefficient is 0.64, which greatly affects the overall stability of the hydraulic support. When the support bears to lateral torque, the weakening effect of offset load acting on different positions on the bearing performance of the support is the same, and the magnitude of offset load is positively correlated with the weakening effect. When considering the different initial load ratios (ILR) of the column, it is found that the hinge joint of top beam and shield beam is the most sensitive to the change of ILR, and the insufficient initial support of the front column has the greatest weakening effect on the bearing performance of the support. The research results can help to optimize the structure of the support shield support and improve the bearing reliability of the hydraulic support.

  • [1]
    康红普,王国法,姜鹏飞,等. 煤矿千米深井围岩控制及智能开采技术构想[J]. 煤炭学报,2018,43(7):1789−1800. doi: 10.13225/j.cnki.jccs.2018.0634

    KANG Hongpu,WANG Guofa,JIANG Pengfei,et al. Conception for strata control and intelligent mining technology in deep coal mines with depth more than 1000m[J]. Journal of China Coal Society,2018,43(7):1789−1800. doi: 10.13225/j.cnki.jccs.2018.0634
    [2]
    闫少宏,徐 刚,范志忠. 我国综合机械化开采50年发展历程与展望[J]. 煤炭科学技术,2021,49(11):1−9.

    YAN Shaohong,XU Gang,FAN Zhizhong. Development course and prospect of the 50 years’ comprehensive mechanized coal mining in china[J]. Coal Science and Technology,2021,49(11):1−9.
    [3]
    FRITH Russell C. A holistic examination of the load rating design of longwall shields after more than half a century of mechanised longwall mining[J]. International Journal of Mining Science and Technology,2015,25(5):687−706. doi: 10.1016/j.ijmst.2015.07.001
    [4]
    王国法,庞义辉,李明忠,等. 超大采高工作面液压支架与围岩耦合作用关系[J]. 煤炭学报,2017,42(2):518−526. doi: 10.13225/j.cnki.jccs.2016.0699

    WANG Guofa,PANG Yihui,LI Mingzhong,et al. Hydraulic support and coal wall coupling relationship in ultra large height mining face[J]. Journal of China Coal Society,2017,42(2):518−526. doi: 10.13225/j.cnki.jccs.2016.0699
    [5]
    潘俊锋,齐庆新,刘少虹,等. 我国煤炭深部开采冲击地压特征、类型及分源防控技术[J]. 煤炭学报,2020,45(1):111−121.

    PAN Junfeng,QI Qingxin,LIU Shaohong,et al. Characteristics, types and prevention and control technology of rock burst in deep coal mining in China[J]. Journal of China Coal Society,2020,45(1):111−121.
    [6]
    谢云跃,孟昭胜,曾庆良,等. 深井冲击载荷下液压支架底板比压分布特性[J]. 煤炭学报,2020,45(3):982−989. doi: 10.13225/j.cnki.jccs.SJ19.1541

    XIE Yunyue,MENG Zhaosheng,ZENG Qingliang,et al. Analysis of distribution characteristics of study on floor specific pressure of hydraulic support for deep mining based on impact loading[J]. Journal of China Coal Society,2020,45(3):982−989. doi: 10.13225/j.cnki.jccs.SJ19.1541
    [7]
    王国法,张金虎,徐亚军,等. 深井厚煤层长工作面支护应力特性及分区协同控制技术[J]. 煤炭学报,2021,46(3):763−773.

    WANG Guofa,ZHANG Jinhu,XU Yajun,et al. Supporting stress characteristics and zonal cooperative control technology of long working face in deep thick coal seam[J]. Journal of China Coal Society,2021,46(3):763−773.
    [8]
    潘立友,唐 鹏,周脉来,等. 悬顶结构巷道冲击地压防控研究[J]. 煤炭科学技术,2022,50(4):42−48. doi: 10.13199/j.cnki.cst.2020-1267

    PAN Liyou,TANG Peng,ZHOU Mailai,et al. Research on prevention and control of rock burst in entry with suspended roof structure[J]. Coal Science and Technology,2022,50(4):42−48. doi: 10.13199/j.cnki.cst.2020-1267
    [9]
    WANG Xuewen,YANG Zhaojian,FENG Jiling,et al. Stress analysis and stability analysis on doubly -telescopic prop of hydraulic support[J]. Engineering Failure Analysis,2013,32:274−282.
    [10]
    徐亚军,王国法,刘业献. 两柱掩护式液压支架承载特性及其适应性研究[J]. 煤炭学报,2016,41(8):2113−2120. doi: 10.13225/j.cnki.jccs.2015.1833

    XU Yajun,WANG Guofa,LIU Xianye. Supporting property and adaptability of 2-leg powered support[J]. Journal of China Coal Society,2016,41(8):2113−2120. doi: 10.13225/j.cnki.jccs.2015.1833
    [11]
    孟昭胜,曾庆良,万丽荣,等. 掩护式液压支架顶梁承载特性及其适应性研究[J]. 煤炭学报,2018,43(4):1162−1170.

    MENG Zhaosheng,ZENG Qingliang,WAN Lirong,et al. Supporting performance and canopy adaptability of shield support[J]. Journal of China Coal Society,2018,43(4):1162−1170.
    [12]
    张德生,任怀伟,何 明,等. 两柱掩护式液压支架内外加载支护对比试验研究[J]. 煤炭科学技术,2019,47(11):135−142.

    ZHANG Desheng,REN Huaiwei,HE Ming,et al. Experimental study on supporting status of internal and external loading of two-legs shielded hydraulic support[J]. Coal Science and Technology,2019,47(11):135−142.
    [13]
    梁利闯,田嘉劲,郑 辉,等. 冲击载荷作用下液压支架的力传递分析[J]. 煤炭学报,2015,40(11):2522−2527. doi: 10.13225/j.cnki.jccs.2015.7021

    LIANG Lichuang,TIAN Jiajin,ZHENG Hui,et al. A study on force transmission in a hydraulic support under impact loading on its canopy beam[J]. Journal of China Coal Society,2015,40(11):2522−2527. doi: 10.13225/j.cnki.jccs.2015.7021
    [14]
    曾庆良,杨春祥,刘 鹏,等. 不同顶板压力作用下特大采高液压支架受力分析[J]. 煤炭技术,2018,37(4):187−189.

    ZENG Qingliang,YANG Chunxiang,LIU Peng,et al. Stress analysis of hydraulic powered support for ultra high mining under different roof pressure[J]. Coal Technology,2018,37(4):187−189.
    [15]
    REN Huaiwei,ZHANG Desheng,GONG Shixin,et al. Dynamic impact experiment and response characteristics analysis for 1: 2 reduced-scale model of hydraulic support[J]. International Journal of Mining Science and Technology,2021,31(3):347−356. doi: 10.1016/j.ijmst.2021.03.004
    [16]
    WAN Lirong,WANG Jiantao,ZENG Qingliang,et al. Vibration response analysis of the tail beam of hydraulic support impacted by coal gangue particles with different shapes[J]. ACS Omega,2022,7(4):3656−3670. doi: 10.1021/acsomega.1c06279
    [17]
    张志军,顾克秋,张鑫磊. 液压缸刚度有限元计算方法[J]. 火炮发射与控制学报,2016,37(1):55−58,73.

    ZHANG Zhijun,GU Keqiu,ZHANG Xinlei. Finite element method to calculate hydraulic cylinder stiffness[J]. Journal of Gun Launch and Control,2016,37(1):55−58,73.
    [18]
    徐 伟. 冲击载荷下液压支架立柱的受载特性研究[J]. 煤矿机械,2021,42(2):63−66.

    XU Wei. Study on load characteristics of hydraulic support column under impact load[J]. Coal Mine Machinery,2021,42(2):63−66.
    [19]
    赵忠辉,姜金球,王 勇,等. 立柱在冲击动载荷作用下的动应力及冲击力分析[J]. 煤矿机械,2010,31(8):118−119. doi: 10.3969/j.issn.1003-0794.2010.08.051

    ZHAO Zhonghui,JIANG Jinqiu,WANG Yong,et al. Impacting dynamic stress and impacting force analysis of hydraulic column[J]. Coal Mine Machinery,2010,31(8):118−119. doi: 10.3969/j.issn.1003-0794.2010.08.051
    [20]
    万丽荣,刘 鹏,孟昭胜,等. 特大采高液压支架底板比压分析研究[J]. 山东科技大学学报(自然科学版),2018,37(5):34−39.

    WAN Lirong,LIU Peng,MENG Zhaosheng,et al. Analysis of floor pressure of hydraulic powered support for ultra high mining[J]. Journal of Shandong University of Science and Technology(Natural Science),2018,37(5):34−39.
    [21]
    ZENG Qingliang,MENG Zhaosheng,WAN Lirong,et al. Analysis on force transmission characteristics of twolegged shield support under impact loading[J]. Shock and Vibration,2018(10):1−10.
  • Cited by

    Periodical cited type(8)

    1. 王刚,郑金叶,刘义鑫,祝清傲,杨宝东,范玉林. 高温后砂岩真三轴加卸载力学特性演化规律. 煤炭科学技术. 2025(02): 124-136 . 本站查看
    2. 王波,田志银,马世纪,任永政,高翔宇,孙宏旭,黄万朋,王军. 流变扰动条件下红砂岩敏感邻域范围试验. 煤炭学报. 2025(02): 917-929 .
    3. 黄家军,李斌,王鹏. 一种考虑主应力空间特性的岩石强度准则. 岩石力学与工程学报. 2024(01): 157-169 .
    4. 张培森,许大强,颜伟,张晓乐,董宇航,赵铭. 应力-渗流耦合作用下不同卸荷路径对砂岩损伤特性及能量演化规律的影响研究. 岩土力学. 2024(02): 325-339 .
    5. 陈积鑫,王开,张小强,姜玉龙,侯建,潘晨鸿,王文伟. 循环载荷作用下饱水灰岩力学性能及能量演化规律研究. 矿业研究与开发. 2024(04): 203-212 .
    6. 王磊,刘化强,陈礼鹏,刘怀谦,李少波,朱传奇,范浩. 煤张开型裂隙三维宏细观演化特征及扰动因素探究. 煤炭科学技术. 2024(05): 71-83 . 本站查看
    7. 龙航,林海飞,马东民,李树刚,季鹏飞,白杨. 基于弹-塑性变形的含瓦斯煤体渗透率动态演化模型. 煤炭学报. 2024(09): 3859-3871 .
    8. 龚训,金之钧,马新华,刘钰洋,李关访,缪欢. 川南地区志留系龙马溪组页岩力学性质及微观破裂机理. 石油与天然气地质. 2024(05): 1447-1455 .

    Other cited types(0)

Catalog

    Article views (119) PDF downloads (121) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return