Advance Search
ZHAO Bingchao,WANG Jingbin,ZHANG Qing,et al. Experimental study on mechanical properties of filling-bulk ce-menting combination body[J]. Coal Science and Technology,2023,51(7):298−309. DOI: 10.13199/j.cnki.cst.2022-0911
Citation: ZHAO Bingchao,WANG Jingbin,ZHANG Qing,et al. Experimental study on mechanical properties of filling-bulk ce-menting combination body[J]. Coal Science and Technology,2023,51(7):298−309. DOI: 10.13199/j.cnki.cst.2022-0911

Experimental study on mechanical properties of filling-bulk ce-menting combination body

Funds: 

National Natural Science Foundation of China (52074208,51874230)

More Information
  • Received Date: June 15, 2022
  • Available Online: June 15, 2023
  • In order to study the influence of caved rocks in the goaf on the backfilling body in the backfilling mining, uniaxial compression test are carried out on the backfilling body-cemented granular body combination with different granular heights, discrete element lithology and backfilling body strength. The uniaxial compression failure of the combination body specimen is monitored in real time by using the three-dimensional acoustic emission positioning technology. The deformation and failure corresponding to the AE events in the loading process is characterized by combining the time parameters of AE events with the starting time points of the four stages of the stress-strain curve. Based on this, the failure model for the interface of the combination body is established. The results show that the height of granular is negatively correlated with the strength of the combination body, and the uniaxial compressive strength of the combination body with the backfilling height ratio of 1:4 is only 55.0 % of that of the single backfilling body. The discrete element lithology and the strength of backfilling body are positively correlated with the strength of the combination body. Although high-strength backfilling body can improve the uniaxial compressive strength of the combination body, the higher the strength of filling body in the combination body, the more serious the strength reduction of the combination body. When the particle lithology in cemented bulk is siltstone with low strength, the uniaxial compressive strength of the combination body is only 42.9% of that of single combination body. The siltstone with smaller compressive strength will have a fracture plane due to shear failure during the failure, and the limestone with larger compressive strength can withstand shear load by using the shear strength of the granular particles. When the cementing matrix in the cemented granular fails or the particles in the cemented granular are broken, the interface of the backfilling body and the cemented granular undergoes non-uniform compression deformation, resulting in the stress concentration on the backfilling body on the interface damaged by the cemented granular, resulting in the shear failure of the upper backfilling body locally, and the failure of backfilling body is the contribution of both axial stress and non-uniform deformation of the interface.

  • [1]
    胡炳南,刘鹏亮,崔 峰,等. 我国充填采煤技术回顾及发展现状[J]. 煤炭科学技术,2020,48(9):39−47.

    HU Bingnan,LIU Pengliang,CUI Feng,et al. Review and development status of backfill coal mining technology in China[J]. Coal Science and Technology,2020,48(9):39−47.
    [2]
    冯国瑞,张玉江,戚庭野,等. 中国遗煤开采现状及研究进展[J]. 煤炭学报,2020,45(1):151−159.

    FENG Guorui,ZHANG Yujiang,QI Tingye,et al. Status and research progress for residual coal mining in China[J]. Journal of China Coal Society,2020,45(1):151−159.
    [3]
    许家林,轩大洋,朱卫兵,等. 部分充填采煤技术的研究与实践[J]. 煤炭学报,2015,40(6):1303−1312.

    XU Jialin,XUAN Dayang,ZHU Weibing,et al. Study and application of coal mining with partial backfilling[J]. Journal of China Coal Society,2015,40(6):1303−1312.
    [4]
    徐树媛,张永波,时 红,等. 采空区垮落带内破碎岩体的渗流特征与渗透性试验研究[J]. 安全与环境工程,2022,29(1):128−134.

    XU Shuyuan,ZHANG Yongbo,SHI Hong,et al. Flow characteristics and experimental study on the permeability of mining-induced fractured rock mass in caving zones[J]. Safety and Environmental Engineering,2022,29(1):128−134.
    [5]
    邓念东, 代育朝. 条带采空区膏体充填回收煤柱方法研究[J]. 内蒙古煤炭经济, 2020, 297(4): 9−10.

    DENG Niandong, DAI Yuchao. Study on coal pillar recovery method by paste filling in strip goaf[J]. Inner Mongolia Coal Economy 2020, 297(4): 9−10.
    [6]
    孙希奎. 置换条带开采中充填体强度分析[J]. 煤炭科学技术,2011,39(5):33−36.

    SUN Xikui. Analysis on backfill material strength of replacement for belt coal pillar mining[J]. Coal Science and Technology,2011,39(5):33−36.
    [7]
    孙 闯,闫少宏,徐乃忠,等. 大采高综采工作面采空区垮落矸石刚度实验[J]. 煤炭学报,2020,45(S1):38−48.

    SUN Chuang,YAN Shaohong,XU Naizhong,et al. Experimental study on the stiffness of waste rock of gob of fully mechanized mining with large mining height[J]. Journal of China Coal Society,2020,45(S1):38−48.
    [8]
    王建学. 开采沉陷塑性损伤结构理论与冒矸空隙注浆充填技术的研究[D]. 北京: 煤炭科学研究总院, 2001.

    WANG Jianxue. Damage-plasticity coupled model for jointed rock mass to subsidence control and the technology of goaf stowing with cement materials[D]. Beijing: China Coal Research Insitute, 2001.
    [9]
    王建学,刘天泉. 冒落矸石空隙注浆胶结充填减沉技术的可行性研究[J]. 煤矿开采,2001,6(1):4,44−45.

    WANG Jianxue,LIU Tianquan. Feasibility study on the technology of filling the vacant space of the caving rock with cement materials[J]. Coal Mining Technology,2001,6(1):4,44−45.
    [10]
    王建学,李华东,杨本生. 采空区冒矸空隙充填减小地面下沉开采技术的研究[J]. 煤炭工程,2005,37(4):16−18.

    WANG Jianxue,LI Huadong,YANG Bensheng. Study on the mining technology of reducing ground subsidence by filling gangue void in goaf[J]. Coal Engineering,2005,37(4):16−18.
    [11]
    朱 磊, 潘 浩, 古文哲, 等. 垮落带矸石充填浆体流动扩散规律试验研究[J/OL]. 煤炭学报: 1−10 [2022-05-20]. DOI: 10.13225/j.cnki.jccs.2021.0247.

    ZHU Lei, PAN Hao, GU Wenzhe, et al. Experimental study on flow and diffusion law of gangue filling slurry in caving zone[J/OL]. Journal of China Coal Society: 1−10 [2022-05-20]. DOI: 10.13225/j.cnki.jccs.2021.0247.
    [12]
    冯光明,孙春东,王成真,等. 超高水材料采空区充填方法研究[J]. 煤炭学报,2010,35(12):1963−1968.

    FENG Guangming,SUN Chundong,WANG Chengzhen,et al. Research on goaf filling methods with super high-water material[J]. Journal of China Coal Society,2010,35(12):1963−1968.
    [13]
    曹 帅,宋卫东,薛改利,等. 考虑分层特性的尾砂胶结充填体强度折减试验研究[J]. 岩土力学,2015,36(10):2869−2876.

    CAO Shuai,SONG Weidong,XUE Gaili,et al. Tests of strength reduction of cemented tailings filling considering layering character[J]. Rock and Soil Mechanics,2015,36(10):2869−2876.
    [14]
    ZHAO Zenghui,WANG Weiming,DAI Chunquan,et al. Failure characteristics of three-body model composed of rock and coal with different strength and stiffness[J]. Transacfions of Nonferrous Metals Society of China,2014,24(5):1538−1546. doi: 10.1016/S1003-6326(14)63223-4
    [15]
    尹大伟. 顶板-煤柱结构体稳定性能实验研究[D]. 青岛: 山东科技大学, 2018.

    YIN Dawei. Experimental study on stabilities of roof-coal pillar structural body[D]. Qingdao: Shandong University of Science and Technology, 2018.
    [16]
    陈绍杰,尹大伟,张保良,等. 顶板-煤柱结构体力学特性及其渐进破坏机制研究[J]. 岩石力学与工程学报,2017,36(7):1588−1598.

    CHEN Shaojie,YIN Dawei,ZHANG Baoliang,et al. Mechanical characteristics and progressive failure mechanism of roof-coal pillar structure[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(7):1588−1598.
    [17]
    冯文生,郑 治. 大粒径填料工程特性的试验和研究[J]. 公路交通技术,2004(1):1−4,9.

    FENG Wensheng,ZHENG Zhi. Tests and researches on engineering properties of large particlesize fillers[J]. Technology of Highway and Transport,2004(1):1−4,9.
    [18]
    郭庆国. 粗粒土的工程特性及应用[M]. 郑州: 黄河水利出版社, 1983.
    [19]
    张俊文,王海龙,陈绍杰,等. 大粒径破碎岩石承压变形特性[J]. 煤炭学报,2018,43(4):1000−1007.

    ZHANG Junwen,WANG Hailong,CHEN Shaojie,et al. Bearing deformation characteristics of large-size broken rock[J]. Journal of China Coal Society,2018,43(4):1000−1007.
    [20]
    李兴尚. 建筑物下条带开采冒落区注浆充填减沉技术的理论研究[D]. 徐州: 中国矿业大学, 2008.

    LI Xingshang. Study on mechanism of the grouting backfill in caving area with strip mining under buildings[D]. Xuzhou: China University of Mining & Technology, 2008.
    [21]
    张 超,展旭财,杨春和. 粗粒料强度及变形特性的细观模拟[J]. 岩土力学,2013,34(7):2077−2083.

    ZHANG Chao,ZHAN Xucai,YANG Chunhe. Mesoscopic simulation of strength and deformation characteristics of coarse grained materials[J]. Rock and Soil Mechanics,2013,34(7):2077−2083.
    [22]
    HENKEL-D-J Bishop w a. The measurement of soils properties in triaxial test[R]. London: Edward Arnold Ltd, 1962.
    [23]
    胡炳南,郭爱国. 矸石充填材料压缩仿真实验研究[J]. 煤炭学报,2009,34(8):1076−1080.

    HU Bingnan,GUO Aiguo. Testing study on coal waste back filling material compression simulation[J]. Journal of China Coal Society,2009,34(8):1076−1080.
    [24]
    程爱平,舒鹏飞,张玉山,等. 充填体-围岩组合体声发射特征与损伤本构研究[J]. 采矿与安全工程学报,2020,37(6):1238−1245.

    CHENG Aiping,SHU Pengfei,ZHANG Yushan,et al. Acoustic emission characteristics and damage constitution of backfill-surrounding rock combination[J]. Journal of Mining & Safety Engineering,2020,37(6):1238−1245.
    [25]
    王小琼,葛洪魁,宋丽莉,等. 两类岩石声发射事件与Kaiser效应点识别方法的试验研究[J]. 岩石力学与工程学报,2011,30(3):580−588.

    WANG Xiaoqiong,GE Hongkui,SONG Lili,et al. Experimental study of two types of rock sample acoustic emission events and kaiser effect point recognition approach[J]. Chinese Journal of Rock Mechanics and Engineering,2011,30(3):580−588.
    [26]
    吴顺川. 岩石力学[M]. 北京: 高等教育出版社, 2021.
    [27]
    张志博,李树杰,王恩元,等. 基于声发射事件时–空维度聚类分析的煤体损伤演化特征研究[J]. 岩石力学与工程学报,2020,39(S2):3338−3347.

    ZHANG Zhibo,LI Shujie,WANG Enyuan,et al. Research on the damage evolution characteristics of coal based on cluster analysis of temporal-spatial dimension of acoustic emission events[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(S2):3338−3347.
    [28]
    向 鹏,纪洪广,孔灵锐,等. 基于两体系统动态加卸载效应的冲击地压机理[J]. 煤炭学报,2016,41(11):2698−2705.

    XIANG Peng,JI Hongguang,KONG Lingrui,et al. Rockburst mechanism analysis based on dynamic loading and unloading effect of two-body systems[J]. Journal of China Coal Society,2016,41(11):2698−2705.
    [29]
    刘建新,唐春安,朱万成,等. 煤岩串联组合模型及冲击地压机理的研究[J]. 岩土工程学报,2004,26(2):276−280.

    LIU Jianxin,TANG Chun’an,ZHU Wancheng,et al. Rock - coal model for studying the rockburst[J]. Chinese Jounal of Geotechnical Engineering,2004,26(2):276−280.
  • Cited by

    Periodical cited type(8)

    1. 池小楼,韦忠华,杨科,王春梅,王同. 大倾角煤层下分层复采破碎顶板注浆改性试验研究. 煤炭科学技术. 2025(02): 27-40 . 本站查看
    2. 夏文韬,杨科,何祥,张连富,侯永强. 不同粒组骨料对矸石胶结充填体力学特性及破坏特征的影响. 中国矿业. 2025(05): 206-213 .
    3. 周仙丽,王家乐,李杰. 矸石粉基胶结充填材料析水特性试验研究. 煤矿安全. 2024(04): 164-168 .
    4. 李晓磊,杜献杰,冯国瑞,巨峰,王建伟,刘文昊,郑远翔. 水泥–粉煤灰基矸石胶结充填体破坏特征及强度形成机制. 煤炭科学技术. 2024(05): 36-45 . 本站查看
    5. 曹兰柱,胡亚涛,姜聚宇,蔡明祥,李磊. 端帮充填开采支撑煤柱参数设计方法. 安全与环境学报. 2024(08): 2987-2993 .
    6. 陈兵,刘忠平,高亮,张哲鹏,翟迪. 充填体破坏特征的聚类分析及数值模拟. 矿业安全与环保. 2024(04): 117-126 .
    7. 赵茂平,武竹. 沟谷山地区粉煤灰基质自流充填减沉技术与工程实践. 煤炭科学技术. 2024(11): 309-322 . 本站查看
    8. 吕文玉,李世杰,伍永平,解盘石,谭毅,吴昀潞. “膏体-矸石”复合承载结构的力学特性试验研究. 采矿与岩层控制工程学报. 2023(05): 47-53 .

    Other cited types(5)

Catalog

    Article views (186) PDF downloads (108) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return