Citation: | MA Li,XU Tianxin,BI Yinli,et al. Influence characteristics of regional micrometeorology on macroscopic scale of external dump[J]. Coal Science and Technology,2023,51(8):313−323. DOI: 10.13199/j.cnki.cst.2022-0565 |
To study the relationship of external dump of opencast coal mine impacting on surrounding micrometeorological factors, and then provide the foundation acknowledge for the ecological restoration in mining area, the airflow movement and water distribution around the mine area were regarded as the influencing factors to furtherly explore the ecological effects of the scale and form of the external dump. Taking Hongshaquan open-pit coal mine as an example, using Fluent fluid simulation software, adopting large eddy simulation and component transfer model, the external dump models with different heights and angles were established for simulation. The monthly temperature and dew point data of the area in 2020 were obtained through the regional meteorological station where Hongshaquan open-pit coal mine located, thereby reaching the monthly condensation height of the area. By analyzing the cloud diagrams of air velocity and moisture mass fraction under different conditions, the influence law of different sizes of external dump on the surrounding air flow movement and water distribution was obtained, and compared with the condensation height in the area. The numerical simulation results showed that: with the increasing dump height, the air climbing speed increased slowly, while the maximum climbing height increased, as well as the moisture mass fraction on the windward slope and the dump top ascended. More and more obvious Karman vortex street phenomenon was formed along the leeward slope. The number of vortices increased and the influence range became larger. Both of the airflow velocity and moisture mass fraction in the vortex area increased and reached their maximum values. The increase in the angle of the external dump presented a significant impact on the maximum climb height of the airflow, but showed little impact on the surrounding micrometeorological factors. Under the condition of 360 m limit height, when the external dump Angle reached the critical value of 26°, the maximum airflow climbing height would reach the summer condensation height in this area. Alternatively, under the condition of 22° limit Angle of the outer dump, when the height of the outer dump reached the critical value of 380 m, the maximum climbing height of airflow would reach the summer condensation height of the region, thereby promoting the precipitation around the mining area
[1] |
钟水新. 地形对降水的影响机理及预报方法研究进展[J]. 高原气象,2020,39(5):1122−1132. doi: 10.7522/j.issn.1000-0534.2019.00083
ZHONG Shuixin. Research progress on the mechanism and forecast methods of the influence of topography on precipitation[J]. Plateau meteorological,2020,39(5):1122−1132. doi: 10.7522/j.issn.1000-0534.2019.00083
|
[2] |
COLLE Brian. Sensitivity of orographic precipitation to changing ambient conditions and terrain geometries: An idealized modeling perspective[J]. Journal of the Atmospheric Sciences,2004,61(5):588−606. doi: 10.1175/1520-0469(2004)061<0588:SOOPTC>2.0.CO;2
|
[3] |
孟英杰,李丽平,王珊珊,等. 中尺度暴雨过程中地形抬升作用分析[J]. 安徽农业学,2010,38(12):6333−6336,6402.
MENG Yingjie,LI Liping,WANG Shanshan,et al. Analysis of topographic uplift during mesoscale rainstorm[J]. Anhui Agriculture,2010,38(12):6333−6336,6402.
|
[4] |
把 黎. 祁连山地区大气背景场及地形云降水过程的特征分析[D]. 兰州: 兰州大学, 2020: 39−44
BA Li. Characteristic analysis of atmospheric background field and orographic cloud precipitation process in Qilian Mountains[D]. Lanzhou: Lanzhou university, 2020: 39−44
|
[5] |
KATZFEY Jack. Simulation of extreme New Zealand precipitation events. part Ⅰ: sensitivity to orography and resolution[J]. Monthly Weather Review,1995,123(3):737−754. doi: 10.1175/1520-0493(1995)123<0737:SOENZP>2.0.CO;2
|
[6] |
安小艳. 天山山区地形对降水空间分布的影响研究[D]. 石河子: 石河子大学, 2015: 31−38
AN Xiaoyan. Effect of topography on spatial distribution of precipitation in Tianshan Mountains [D]. Shihezi: Shihezi University, 2015: 31−38
|
[7] |
廖 菲, 洪延超, 郑国光. 地形对降水的影响研究概述[J]. 气象科技, 2007, 35(3): 309−316.
LIAO Fei, HONG Yanchao, ZHENG Guoguang. Research overview of the effect of topography on precipitation[J]. Meteorological Science and Technology, 2007, 35(3): 309−316.
|
[8] |
COLLE Brain,ZENG Yanguang. Bulk microphysical sensitivities within the MM5 for orographic precipitation. part II: Impact of Barrier Width and Freezing Level[J]. Monthly Weather Review,2005,132(12):2802−2815.
|
[9] |
马英武. 准东矿区露天煤矿排土场水土保持防治措施分析[C]// 首届干旱半干旱区域水土保持生态保护论坛论文选编. 2013: 271−273.
MA Yingwu. Analysis of soil and water conservation prevention and control measures of dump in Zhundong Mine area[C]// Selected papers of the first Forum on Soil and Water Conservation and Ecological Protection in arid and Semi-arid Regions. 2013: 271−273.
|
[10] |
翟朝阳,陈高安,杨新峰,等. 微地形对大西沟野杏幼苗生境的气候和土壤温湿度的影响[J]. 中国农学通报,2019,35(27):114−120.
ZHAI Chaoyang,CHEN Gaoan,YANG Xinfeng,et al. Effects of microtopography on climate and soil temperature and humidity of daxigou Apricot seedling habitat[J]. Chinese Agricultural Science Bulletin,2019,35(27):114−120.
|
[11] |
孟 清,白红英,赵 婷,等. 秦岭山地气候变化的地形效应[J]. 山地学报,2020,38(2):180−189.
MENG Qing,BAI Hongying,ZHAO Ting,et al. Terrain effects of climate change in the Qinling Mountains[J]. Journal of Mountain Science,2020,38(2):180−189.
|
[12] |
黄菊梅, 邹用昌, 赵光平, 等. 中小尺度地形对降水影响研究[J]. 人民长江, 2013, 44(S1): 28-31.
HUANG Jumei, ZOU Yongchang, ZHAO Guangping, et al. Impact of mesoscale topography on precipitation. [J] Yangtze River, 2013, 44(S1): 28-31.
|
[13] |
文 迁,谭国良,罗嗣林. 降水分布受地形影响的分析[J]. 水文,1997(S1):64−66.
WEN Qian,TAN Guoliang,LUO Silin. Analysis of precipitation distribution influenced by topography[J]. Hydrology,1997(S1):64−66.
|
[14] |
孙继松. 气流的垂直分布对地形雨落区的影响[J]. 高原气象,2005,24(1):62−69. doi: 10.3321/j.issn:1000-0534.2005.01.010
SUN Jisong. Influence of Vertical Distribution of Air Flow on Topographic Rainfall Area[J]. Plateau Meteorology,2005,24(1):62−69. doi: 10.3321/j.issn:1000-0534.2005.01.010
|
[15] |
SCHNEIDER Linda,BARTHLOTT Christian,BARRETT Andrew,et al.Corinna Hoose The precipitation response to variable terrain forcing over low mountain ranges in different weather regimes[J]. Quarterly Journal of the Royal Meteorological Society,2018,144(713):970−989.
|
[16] |
范广洲,吕世华. 地形对华北地区夏季降水影响的数值模拟研究[J]. 高原气象,1999(4):659−667. doi: 10.3321/j.issn:1000-0534.1999.04.023
FAN Guangzhou,Lv Shihua. Numerical simulation of the effect of Topography on summer precipitation in North China[J]. Plateau Meteorology,1999(4):659−667. doi: 10.3321/j.issn:1000-0534.1999.04.023
|
[17] |
郭 璇,田 苗,洪程之,于瑞波,陈权亮. 川西高原地形特征对降水的影响[J]. 新疆农垦科技,2017,40(12):40−42. doi: 10.3969/j.issn.1001-361X.2017.12.017
GUO Xuan,TIAN Miao,HONG Chengzhi,et al. Effects of topographic characteristics on precipitation in western sichuan plateau[J]. Xinjiang agricultural reclamation technology,2017,40(12):40−42. doi: 10.3969/j.issn.1001-361X.2017.12.017
|
[18] |
陈 印,杨 溢,刘 磊,等. 排土场边坡稳定性分析及台阶高度的确定[J]. 中国锰业,2016,34(2):21−24.
CHEN Yin,YANG Yi,LIU Lei,et al. Stability analysis of dump slope and determination of step Height[J]. China Manganese Industry,2016,34(2):21−24.
|
[19] |
高登义. 中国山地环境气象学[M]. 河南科技出版社, 2005: 90−92.
|
[20] |
于晓晶,赵 勇. 地形对天山夏季降水影响的模拟[J]. 中国沙漠,2016,36(4):1133−1143.
YU Xiaojing,Zhao Yong. Simulation of the effect of topography on summer precipitation in tianshan Mountains[J]. The Chinese desert,2016,36(4):1133−1143.
|
[21] |
王沛霖,许丽章. 抬升凝结高度的精确计算[J]. 中山大学学报论丛,1993(1):146−149.
WANG Peilin,Xu Lizhang. Precise calculation of uplift condensation height[J]. Journal of Sun Yat-sen University,1993(1):146−149.
|
[22] |
陈创买, 郭英琼. 气象常用参数和物理量查算表 [M]. 北京: 气象出版社, 1980. 3−4.
CHEN Chuangmai, Guo Yingqiong. Checking table of Common Meteorological Parameters and Physical Quantities [J]. Beijing: China Meteorological Press, 1980. 3-4.
|
[23] |
张兆顺, 崔桂香, 许春晓. 湍流大涡数值模拟的理论和应用[M]. 北京: 清华大学出版社, 2008: 57-60.
|
[24] |
张兆顺, 崔桂香, 许春晓. 湍流理论与模拟[M]. 北京: 清华大学出版社, 2017: 236-248.
|
[25] |
唐家鹏. ANSYS FLUENT 16.0超级学习手册[M]. 北京: 人民邮电出版社, 2016: 395-397.
|
[26] |
凌桂龙. Fluent 19.0流体计算从入门到精通[M]. 北京: 电子工业出版社, 2015: 221-222.
|