Advance Search
MENG Lingyu,ZHOU Rulin,GUO Zijian. Design and research of hydraulic cylinder precise control test system[J]. Coal Science and Technology,2023,51(6):237−245. DOI: 10.13199/j.cnki.cst.2022-0448
Citation: MENG Lingyu,ZHOU Rulin,GUO Zijian. Design and research of hydraulic cylinder precise control test system[J]. Coal Science and Technology,2023,51(6):237−245. DOI: 10.13199/j.cnki.cst.2022-0448

Design and research of hydraulic cylinder precise control test system

Funds: 

Science and Technology Innovation Venture Capital Project of CCTEG (2020-TD-MS009); Beijing Tianma Smart Control Technology Co., LTD. (2022TM010-J1, 2022TM015-J1)

More Information
  • Received Date: March 28, 2022
  • Available Online: June 05, 2023
  • The position deviation after the continuous action of the hydraulic support in the fully-mechanized mining face affects the mining efficiency of the shearer. In view of the above problems, the mechanism of the hydraulic system of the fully-mechanized mining face is analyzed, the coupling relationship between the system pressure, flow and the displacement of the hydraulic cylinder is established, and a hydraulic cylinder precise displacement test platform with emulsion/pure water as the transmission medium is designed and built, which can carry out eccentric load and lateral load experiments of the test hydraulic cylinder. The test platform is composed of hydraulic test system, oil pressure regulation system, electrical control system, data acquisition system, upper computer software system, loading test bench, etc. The oil pressure regulation mechanism adjusts the working attitude of the hydraulic cylinder, the data acquisition system monitors and tests the pressure, flow, displacement, temperature and other data of the hydraulic cylinder in real time, and the loading test bench equates the hydraulic support, scraper conveyor and shearer as adjustable weight. Data acquisition frequency of the hydraulic cylinder precise control test system is 2 000 Hz, the nominal pressure is 31.5 MPa, the nominal flow is 400 L / min, the test hydraulic cylinder has a cylinder diameter of 100-240 mm, a stroke of 400-1 800 mm, and the working resistance is larger than 100 kN, which can achieve the working mechanism of the hydraulic cylinder under variable working conditions. When the system flow is 126 L/min, the displacement control error of the tested hydraulic cylinder is close to 20%; when the system flow is 50 L/min, the displacement control error of the tested hydraulic cylinder is stable within 7%. The experimental results show that the transient action of hydraulic cylinder extension and retraction can be ignored in the working process, and the displacement control error is mainly caused by the response delay of valve control components, and the control error increases linearly with the increase of system flow, which verifies the feasibility of the high flow rapid action and small flow precise regulation control scheme of the two speed pressure regulating valve. The hydraulic cylinder precise control test system is applicable to the research on the precise control of hydraulic cylinder and the coordinated control of hydraulic cylinder cluster, and provides an experimental method for realizing the precise control of hydraulic support in high-pressure and large flow fully-mechanized mining face.

  • [1]
    张科学,李首滨,何满潮,等. 智能化无人开采系列关键技术之一:综采智能化工作面调斜控制技术研究[J]. 煤炭科学技术,2018,46(1):139−149.

    ZHANG Kexue,LI Shoubin,HE Manchao,et al. Study on key technologies of intelligent unmanned coal mining Series I: Study on diagonal adjustment control technology of intelligent fully-mechanized coal mining face[J]. Coal Science and Technology,2018,46(1):139−149.
    [2]
    孟令宇,周如林,王 伟,等. 大流量交替双向锁流道优化设计及仿真计算[J]. 液压与气动,2021,45(9):101−107. doi: 10.11832/j.issn.1000-4858.2021.09.014

    MENG Lingyu,ZHOU Rulin,WANG Wei,et al. Optimization design and simulation of alternative two-way check valve[J]. Chinese Hydraulics & Pneumatics,2021,45(9):101−107. doi: 10.11832/j.issn.1000-4858.2021.09.014
    [3]
    周 信. 综采装备协同控制关键技术研究[D]. 徐州: 中国矿业大学, 2014.

    ZHOU Xin. Research on the key technologies of cooperative control for equipments in the fully mechanized coal face[D]. Xuzhou: China University of Mining and Technology, 2014.
    [4]
    周如林,乔子石,孟令宇. 综采工作面液压支架立柱快速供回液方案研究[J]. 工矿自动化,2021,47(11):74−80.

    ZHOU Rulin,QIAO Zishi. MENG Lingyu. Study on the fast fluid supply and return scheme of hydraulic support column in fully mechanized working face[J]. Industry and Mine Automation,2021,47(11):74−80.
    [5]
    高有进, 杨 艺, 常亚军, 等. 综采工作面智能化关键技术现状与展望[J]. 煤炭科学技术, 2021, 49(8): 1-22.

    GAO Youjin, YANG Yi, CHANG Yajun, et al. Status and prospect of key technologies of intelligentization of fully- mechanized coal mining face[J], Coal Science and Technology, 2021, 49(8): 1-22.
    [6]
    李帅帅,任怀伟. 综采工作面“三机”设备位姿测量技术研究现状与展望[J]. 煤炭科学技术,2020,48(9):218−226. doi: 10.13199/j.cnki.cst.2020.09.028

    LI Shuaishuai,REN Huaiwei. Research status and development trend of position and posture measurement technology on hydraulic support, scraper, conveyor, shearer in fully-mechanized mining face[J]. Coal Science and Technology,2020,48(9):218−226. doi: 10.13199/j.cnki.cst.2020.09.028
    [7]
    李首滨,李 森,张守祥. 综采工作面智能感知与智能控制关键技术与应用[J]. 煤炭科学技术,2021,49(4):39.

    LI Shoubin,LI Sen,ZHANG Shouxiang,et al. Key technology and application of intelligent perception and intelligent control in fully mechanized mining face[J]. Coal Science and Technology,2021,49(4):39.
    [8]
    王国法,徐亚军,张金虎,等. 煤矿智能化开采新进展[J]. 煤炭科学技术,2021,49(1):1−10. doi: 10.13199/j.cnki.cst.2021.01.001

    WANG Guofa,XU Yajun,ZHANG Jinhu,et al. New development of intelligent mining in coal mines[J]. Coal Science and Technology,2021,49(1):1−10. doi: 10.13199/j.cnki.cst.2021.01.001
    [9]
    张嘉鹭,赵继云. 液压支架大流量安全阀冲击特性试验系统设计与分析[J]. 液压与气动,2021,45(11):62−68. doi: 10.11832/j.issn.1000-4858.2021.11.009

    ZHANG Jialu,ZHAO Jiyun. Design and analysis on impact characteristic test system of hydraulic support large flow safety valve[J]. Chinese Hydraulics & Pneumatics,2021,45(11):62−68. doi: 10.11832/j.issn.1000-4858.2021.11.009
    [10]
    李 然. 大采高工作面高压大流量乳化液泵的研制及应用[J]. 煤炭科学技术,2017,45(12):145−149. doi: 10.13199/j.cnki.cst.2017.12.025

    LI Ran. Research and development as well as application of high pressure and high flow emulsion pump to large mining height face[J]. Coal Science and Technology,2017,45(12):145−149. doi: 10.13199/j.cnki.cst.2017.12.025
    [11]
    中国煤炭工业协会. 煤矿用液压支架 第1部分: 通用技术条件: GB/T 25974.1-2010[S]. 北京: 中国标准出版社, 2011.
    [12]
    中国煤炭工业协会. 煤矿用液压支架 第2部分: 立柱和千斤顶技术条件: GB/T 25974.2-2010[S]. 北京: 中国标准出版社, 2011.
    [13]
    白飞飞,王玉超,罗海平,等. 推移千斤顶动态模拟装置设计与运行技术分析[J]. 煤炭科学技术,2018,46(S1):199−203.

    BAI Feifei,WANG Yuchao,LUO Haiping,et al. Technical analysis of design and operation of dynamic simulation device for advancing jack[J]. Coal Science and Technology,2018,46(S1):199−203.
    [14]
    陈国安,王书婧,王正兰,等. 液压缸微内漏检测试验台设计[J]. 液压气动与密封,2021,41(3):57−59. doi: 10.3969/j.issn.1008-0813.2021.03.016

    CHEN Anguo,WANG Shuqian,WANG Zhenglan,et al. Design of micro internal leakage test-bed for hydraulic cylinder[J]. Hydraulics Pneumatics & Seals,2021,41(3):57−59. doi: 10.3969/j.issn.1008-0813.2021.03.016
    [15]
    牛慧峰,佟祥伟,雷亚飞,等. 智轨列车电液伺服转向系统动态特性测试试验台与测控系统开发[J]. 液压与气动,2019(7):120−127. doi: 10.11832/j.issn.1000-4858.2019.07.020

    NIU Huifeng,TONG Xiangwei,LEI Yafei,et al. Dynamic characteristic test bed and test system development of the electro-hydraulic servo steering[J]. Chinese Hydraulics & Pneumatics,2019(7):120−127. doi: 10.11832/j.issn.1000-4858.2019.07.020
    [16]
    张永贤,李 伟,陈杨谨瑜,等. 基于TS模糊神经网络的液压伺服系统研究[J]. 火力与指挥控制,2021,46(11):49−53,60. doi: 10.3969/j.issn.1002-0640.2021.11.007

    ZHANG Yongxian,LI Wei,CHEN Yangjinyu,et al. Research on hydraulic servo system based on ts fuzzy neural network[J]. Fire Control & Command Control,2021,46(11):49−53,60. doi: 10.3969/j.issn.1002-0640.2021.11.007
    [17]
    王国法,张金虎,徐亚军,等. 深井厚煤层长工作面支护应力特性及分区协同控制技术[J]. 煤炭学报,2021,46(3):763−773.

    WANG Guofa,ZHANG Jinhu,XU Yajun,et al. Supporting stress characteristics and zonal cooperative control technology of long working face in deep thick coal seam[J]. Journal of China Coal Society,2021,46(3):763−773.
    [18]
    周如林,李首滨,韦文术,等. 跟机液压系统压力流量耦合机理研究[J]. 煤炭科学技术,2020,48(05):129−136.

    ZHOU Rulin,LI Shoubin,WEI Wenshu,et al. Study on coupling mechanism of pressure and flow in following hydraulic system of mining face[J]. Coal Science and Technology,2020,48(05):129−136.
    [19]
    ZHOU Rulin, MENG Lingyu, YUAN Xiaoming, et al. Research and experimental analysis of hydraulic cylinder position control mechanism based on pressure detection[J]. Machines, 2021, 10(1).
    [20]
    王云飞. 液压支架群多缸协同系统控制策略研究[D]. 徐州: 中国矿业大学, 2021.

    WANG Yunfei. Study on control strategies for multi-cylinder collaborative system of hydraulic support group[D]. Xuzhou: China University of Mining and Technology, 2021.
    [21]
    王 峰. 液压支架精确推移控制方案研究与应用[J]. 工矿自动化,2017,43(5):6−9.

    WANG Feng. research of precise pushing control scheme for hydraulic support and its application[J]. Industry and Mine Automation,2017,43(5):6−9.
    [22]
    李 森. 基于惯性导航的工作面直线度测控与定位技术[J]. 煤炭科学技术,2019,47(8):169−174.

    LI Sen. Measurement & control and localisation for fully-mechanized working face alignment based on inertial navigation[J]. Coal Science and Technology,2019,47(8):169−174.
  • Cited by

    Periodical cited type(2)

    1. 林强伟,朱永建,罗亚飞,李鹏,王平,李豹. 煤岩裂隙网络水气运移特性数值模拟研究. 矿业科学学报. 2025(01): 125-136+150 .
    2. 刘大锰,王子豪,陈佳明,邱峰,朱凯,高羚杰,周柯宇,许少博,孙逢瑞. 基于ResNet残差神经网络识别的深部煤层显微组分和微裂缝分类——以鄂尔多斯盆地石炭系本溪组8~#煤层为例. 石油与天然气地质. 2024(06): 1524-1536 .

    Other cited types(2)

Catalog

    Article views (139) PDF downloads (50) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return