GUO Zhu,LI Xian,LI Zhiyu,et al. Research progress on degradative solvent extraction of low-rank coals[J]. Coal Science and Technology,2023,51(6):286−303
. DOI: 10.13199/j.cnki.cst.2022-0289Citation: |
GUO Zhu,LI Xian,LI Zhiyu,et al. Research progress on degradative solvent extraction of low-rank coals[J]. Coal Science and Technology,2023,51(6):286−303 . DOI: 10.13199/j.cnki.cst.2022-0289 |
The degradative solvent extraction of low rank coal is the use of solvents to extract low rank coal under mild conditions, through the dehydration and multi-stage separation of the raw coal: the extraction products with no water content, no ash content, high calorific value properties and excellent thermoplastic properties, and low moisture of the extractive residual coal can be obtained. At the same time, the products have practical application advantages in many fields such as coal coking, advanced fuel and carbon material preparation, which have high added value, and the solvent in this technology has the advantage of being recyclable. Therefore, degradative solvent extraction is one of the effective ways to realize the graded fractionated conversion and utilization of low-rank coal. This review firstly introduces the existing low rank coal upgrading methods, and then reviews the development of degradative solvent extraction, focusing on the various influencing factors, reaction mechanisms, existing processes and product utilization of low rank coal upgrading by degradative solvent extraction. Finally, using the "Web of Science core collection" as the data source, the knowledge graph of coal solvent extraction was carved using CiteSpace scientometric software, and the research themes were analyzed to summarize the research directions and predict the research hotspots, providing some reference value for the research of degradative solution extraction of low-rank coal. The comprehensive analysis shows that: the selection of new low-cost green solvents, structural characterization and high-value utilization of extraction products have high research trends, while in-depth research on extraction mechanism and targeted regulation of extractant properties is needed to further promote the process of large-scale production.
[1] |
谢克昌. 中国煤炭清洁高效可持续开发利用战略研究[M]. 北京: 科学出版社, 2014: 2-3.
|
[2] |
赵 鹏,李文博,梁江朋,等. 低阶煤提质技术现状及发展建议[J]. 洁净煤技术,2015,21(1):37−40. doi: 10.13226/j.issn.1006-6772.2015.01.009
ZHAO Peng,LI Wenbo,LIANG Jiangpeng,et al. Status and development suggestion of low rank coal upgrading technologies[J]. Clean Coal Technology,2015,21(1):37−40. doi: 10.13226/j.issn.1006-6772.2015.01.009
|
[3] |
POTTER O E,BEEBY C J,FERNANDO W,et al. Drying brown coal in steam-heated, steam-fluidized beds[J]. Drying Technology,2007,2(2):219−234.
|
[4] |
SUGITA S, DEGUCHI T, SHIGEHISA T.UBC (Upgraded Brown Coal) process development[J]. Research and Development Kobe Steel Engineering Reports, 2003, 53(2):41−45.
|
[5] |
KURUNOV I, BIZHANOV A. Review of alternative applications of stiff extrusion briquetting technology [M]. Stiff Extrusion Briquetting in Metallurgy. Cham; Springer International Publishing. 2018: 161−169.
|
[6] |
WHITE L C,FREDERICK J P. ENCOAL mild coal gasification project[J]. Fuel and Energy Abstracts,1997,38(3):153.
|
[7] |
李 超,李广民,夏芝香,等. 50MW循环流化床煤炭分级转化多联产技术开发[J]. 洁净煤技术,2021,27(5):157−163. doi: 10.13226/j.issn.1006-6772.20050701
LI Chao,LI Guangmin,XIA Zhixiang,et al. Development of 50MW CFB coal pyrolysis and combustion multigeneration technology[J]. Clean Coal Technology,2021,27(5):157−163. doi: 10.13226/j.issn.1006-6772.20050701
|
[8] |
GE Lichao,ZHANG Yanwei,XU Chang,et al. Influence of the hydrothermal dewatering on the combustion characteristics of Chinese low-rank coals[J]. Applied Thermal Engineering,2015,90(6):147−181.
|
[9] |
DHAWAN H,KUMAR R,UPADHYAYULA S,et al. Fractionation of coal through organo-separative refining for enhancing its potential for the CO2-gasification[J]. International Journal of Coal Science & Technology,2020,3(7):504−515.
|
[10] |
秦志宏. 煤嵌布结构模型理论[J]. 中国矿业大学学报,2017,46(5):939−958. doi: 10.13247/j.cnki.jcumt.000730
QIN Zhihong. Theory of coal embedded structure model[J]. Journal of China University of Mining & Technology,2017,46(5):939−958. doi: 10.13247/j.cnki.jcumt.000730
|
[11] |
鲁 浩,杜姣姣,肖 剑,等. 霍州和兴和褐煤的热溶解聚及其有机氧的赋存形态[J]. 燃料化学学报,2018,46(8):897−904.
LU Hao,DU Jiaojiao,XIAO Jian,et al. Thermal dissolution of Huozhou and Xinghe lignites and the occurrence forms of organic oxygen in them[J]. Journal of Fuel Chemistry and Technology,2018,46(8):897−904.
|
[12] |
殷甲楠, 张凤桐, 樊丽华, 等. 低阶煤有机溶剂萃取的研究进展[J]. 洁净煤技术, 2014, 20(6): 100−103.
YIN Jia'nan, ZHANG Fengtong, FAN Lihua, et al. Research progress of organic solvent extraction of low rank coal[J]. Clean Coal Technology, 2014, 20(6): 100−103.
|
[13] |
YIN J,LIN X,WANG C,et al. Identification of the transformation features of heteroatomic compounds in a low rank coal by combining thermal extraction and various analytical approaches[J]. Fuel,2020,270(11):117480.
|
[14] |
HAMAGUCHI M,OKUYAMA N. Manufacturing process and applications of the hypercoal[J]. Carbon,2013,60:568.
|
[15] |
XING B,HUANG G,CHEN L,et al. Microwave synthesis of hierarchically porous activated carbon from lignite for high performance supercapacitors[J]. Journal of Porous Materials,2016,23(1):67−73. doi: 10.1007/s10934-015-0056-0
|
[16] |
PULLEN J R,COAL L I. Solvent extraction of coal[J]. Coal Science,1983,2(17):173−288.
|
[17] |
RENGANATHAN K,ZONDLO J W,MINTZ E A,et al. Preparation of an ultra-low ash coal extract under mild conditions[J]. Fuel Processing Technology,1988,18(3):273−278. doi: 10.1016/0378-3820(88)90051-3
|
[18] |
KASHIMURA N,TAKANOHASHI T,SAITO I. Upgrading the solvent used for the thermal extraction of sub-bituminous coal[J]. Energy & Fuels,2006,20(5):2063−2066.
|
[19] |
MASAKI K,YOSHIDA T,LI C,et al. The effects of pretreatment and the addition of polar compounds on the production of "hypercoal" from subbituminous coals[J]. Energy & Fuels,2004,18(4):995−1000.
|
[20] |
MIURA K. Mild conversion of coal for producing valuable chemicals[J]. Fuel Processing Technology,2000,62(2-3):119−35. doi: 10.1016/S0378-3820(99)00123-X
|
[21] |
谢翠平,杨建国,王羽玲. 超纯煤制备意义及制备方法简介[J]. 洁净煤技术,2004,3(3):45−47. doi: 10.3969/j.issn.1006-6772.2004.03.013
XIE Cuiping,YANG Jianguo,WANG Yuling. Significance of ultra-pue coal preparation and brief introduction of preparation method[J]. Clean Coal Technology,2004,3(3):45−47. doi: 10.3969/j.issn.1006-6772.2004.03.013
|
[22] |
LI X,ZHU X Q,KENSHIRO O,et al. Preparation of carbon fibers from low-molecular-weight compounds obtained from low-rank coal and biomass by solvent extraction[J]. Carbon,2017,32(1):41−47.
|
[23] |
SHUI H,LEI Y,TAO S,et al. Hydro-liquefaction of thermal dissolution soluble fraction of Shenfu subbituminous coal and reusability of catalyst on the hydro-liquefaction[J]. Fuel,2014,115:227−231. doi: 10.1016/j.fuel.2013.07.002
|
[24] |
SHUI H,HE F,WU Y,et al. Study on the use of the thermal dissolution soluble fraction from shenfu sub-bituminous coal in coke-making coal blends[J]. Energy & Fuels,2015,29(3):1558−1563.
|
[25] |
OKUYAMA N , KOMATSU N , SHIGEHISA T . 22-4 The Development of hyper coal process for producing ash-free coal[C]// Twentieth Annual International Pittsburgh Coal Conference Proceedings. Pittsburgh, Pennsylvania, USA, 2019.
|
[26] |
谢克昌. 煤的结构与反应性[M]. 北京: 科学出版社, 2002: 15-31.
|
[27] |
张双全. 煤化学(第2版)[M]. 徐州: 中国矿业大学出版社, 2009: 5−30.
|
[28] |
QIN Zhihong. New advances in coal structure model[J]. International Journal of Mining Science and Technology,2018,28(4):541−559. doi: 10.1016/j.ijmst.2018.06.010
|
[29] |
OKUYAMA N,KOMATSU N,SHIGEHISA T,et al. Hyper-coal process to produce the ash-free coal[J]. Fuel Processing Technology,2004,85(8/9/10):947−967. doi: 10.1016/j.fuproc.2003.10.019
|
[30] |
TAKANOHASHI T,SHARMA A,SAKIMOTO N,et al. Reforming of low-rank coal by chemical upgrading[J]. Fuel,2019,59(8):1382−1385. doi: 10.2355/isijinternational.ISIJINT-2018-807
|
[31] |
TAKANOHASHI T,SHISHIDO T,SAITO I. Effects of hypercoal addition on coke strength and thermoplasticity of coal blends[J]. Energy & Fuels,2008,22(3):1779−1783.
|
[32] |
YOSHIDA T,TAKANOHASHI T,SAKANISHI K,et al. Relationship between thermal extraction yield and softening temperature for coals[J]. Energy & Fuels,2002,16(4):1006−1007.
|
[33] |
KASHIMURA N,TAKANOHASHI T,MASAKI K,et al. Relationship between thermal extraction yield and oxygen-containing functional groups[J]. Energy & Fuels,2006,20(5):2088−2092.
|
[34] |
KOYANO K,TAKANOHASHI T,SAITO I. Estimation of the extraction yield of coals by a simple analysis[J]. Energy & Fuels,2011,25(6):2565−2571.
|
[35] |
TAKANOHASHI T,SHISHIDO T,KAWASHIMA H,et al. Characterisation of hyper coals from coals of various ranks[J]. Fuel,2008,87(4-5):592−598. doi: 10.1016/j.fuel.2007.02.017
|
[36] |
张 帅. 预处理在低阶煤制备无灰煤中的应用[D]. 唐山: 华北理工大学, 2016. 48−53.
ZHANG Shuai. The application of pre-treatment in producing ash-free coal by low rank coals[D]. Tangshan: North China University of Science and Technology, 2016: 48−53.
|
[37] |
SHUI H,WANG Z,WANG G. Effect of hydrothermal treatment on the extraction of coal in the CS2/NMP mixed solvent[J]. Fuel,2006,85(12):1798−1802.
|
[38] |
LI C,TAKANOHASHI T,YOSHIDA T,et al. Effect of acid treatment on thermal extraction yield in ashless coal production[J]. Fuel,2004,83(6):727−732. doi: 10.1016/j.fuel.2003.06.002
|
[39] |
MASAKI K,KASHIMURA N,TAKANOHASHI T,et al. Effect of pretreatment with carbonic acid on “hypercoal” (ash-free coal) production from low-rank coals[J]. Energy & Fuels,2005,19(5):144−151.
|
[40] |
李 显,朱贤青,肖 黎,等. 酸洗脱灰及离子交换对低阶煤热溶剂提质分离的影响[J]. 燃料化学学报,2014,42(8):897−904. doi: 10.1016/S1872-5813(14)60038-4
LI Xian,ZHU Xianqing,XIAO Li,et al. Degradative solvent extraction of demineralized and ion-exchanged low-rank coals[J]. Journal of Fuel Chemistry and Technology,2014,42(8):897−904. doi: 10.1016/S1872-5813(14)60038-4
|
[41] |
FUJITSUKA H,ASHIDA R,MIURA K. Upgrading and dewatering of low rank coals through solvent treatment at around 350°C and low temperature oxygen reactivity of the treated coals[J]. Fuel-Guildford,2013,114(1):16−20.
|
[42] |
LI X,ASHIDA R,MIURA K. Preparation of high-grade carbonaceous materials having similar chemical and physical properties from various low-rank coals by degradative solvent extraction[J]. Energy & Fuels,2012,26(11):6897−6904.
|
[43] |
RAHMAN M,PUDASAINEE D,GUPTA R. Review on chemical upgrading of coal: Production processes, potential applications and recent developments[J]. Fuel Processing Technology,2017,158:35−36. doi: 10.1016/j.fuproc.2016.12.010
|
[44] |
OUCHI K,ITOH S,MAKABE M,et al. Pyridine extractable material from bituminous coal, its donor properties and its effect on plastic properties[J]. Fuel,1989,68(6):735−740. doi: 10.1016/0016-2361(89)90212-3
|
[45] |
MUANGTHONG-ON T,WANNAPEERA J,JADSADAJERM S,et al. Effect of solvent on the degradative solvent extraction of low rank coal[J]. Energy & Fuels,2017,31(11):11954−11962.
|
[46] |
YOSHIDA T,LI C,TAKANOHASHI T,et al. Effect of extraction condition on “HyperCoal” production (2): effect of polar solvents under hot filtration[J]. Fuel Processing Technology,2004,86(1):61−72. doi: 10.1016/j.fuproc.2003.12.003
|
[47] |
PAINTER P,PULATI N,CETINER R,et al. Dissolution and dispersion of coal in ionic liquids[J]. Energy & Fuels,2010,244:1848−1853.
|
[48] |
SöNMEZ Ö,YıLDıZ Ö,ÇAKıR M Ö,et al. Influence of the addition of various ionic liquids on coal extraction with NMP[J]. Fuel,2018,212:12−18. doi: 10.1016/j.fuel.2017.10.017
|
[49] |
邓 兵,秦志宏,华宗琪,等. 褐煤的溶剂萃取研究进展[J]. 燃料与化工,2011,42(4):9−12,5. doi: 10.3969/j.issn.1001-3709.2011.04.003
DENG Bing,QIN Zhihong,HUA Zongqi,et al. Progress of study on ligbite extraction with solvent[J]. Fuel & Chemical Processes,2011,42(4):9−12,5. doi: 10.3969/j.issn.1001-3709.2011.04.003
|
[50] |
SHUI H,YAN Z,LI H,et al. Thermal dissolution of Shenfu coal in different solvents[J]. Fuel,2013,108:385−390. doi: 10.1016/j.fuel.2012.11.005
|
[51] |
KIM S D,WOO K J,JEONG S K ,et al. Production of low ash coal by thermal extraction with N-methyl-2-pyrrolidinone[J]. Korean Journal of Chemical Engineering,2008,25(4):758−763.
|
[52] |
杨建校,魏文杰,祁 勇,等. 无灰煤高效利用研究进展[J]. 煤炭学报,2020,45(9):3301−3313. doi: 10.13225/j.cnki.jccs.2019.0727
YANG Jianxiao,WEI Wenjie,QI Yong,et al. Reserch progress on hyper-coal for efficirnt utilization[J]. Journal of China Coal Society,2020,45(9):3301−3313. doi: 10.13225/j.cnki.jccs.2019.0727
|
[53] |
郭秉霖,侯彩霞,樊丽华,等. 萃取温度对无灰煤结构及煤基活性炭电化学性能的影响[J]. 无机化学学报,2018,34(9):1615−1624. doi: 10.11862/CJIC.2018.201
GUO Binglin,HOU Caixia,FAN Lihua,et al. Effect of extraction temperature on hyper-coal structure and electrochemistry of coal-based activated carbon[J]. Chinese Journal of Inorganic Chemistry,2018,34(9):1615−1624. doi: 10.11862/CJIC.2018.201
|
[54] |
崔咏梅,廉新培,赵风云,等. 热溶剂萃取法制备超纯煤的研究进展[J]. 现代化工,2016,36(9):49−53. doi: 10.16606/j.cnki.issn0253-4320.2016.09.012
CUI Yongmei,LIAN Xinpei,ZHAO Fengyun,et al. Preparation of super clean coal by thermal solvent extraction[J]. Modern Chemical Industry,2016,36(9):49−53. doi: 10.16606/j.cnki.issn0253-4320.2016.09.012
|
[55] |
崔咏梅,胡永琪,许永权,等. 热萃取小康庄1/3焦煤制备超纯煤的工艺研究[J]. 煤炭科学技术,2014,42(1):121−124. doi: 10.13199/j.cnki.cst.2014.01.028
CUI Yongmei,HU Yongqi,XU Yongquan,et al. Study on super clean coal preparation technique with 1/3 coking coal from Xiaokang Village by heat extraction[J]. Coal Science and Technology,2014,42(1):121−124. doi: 10.13199/j.cnki.cst.2014.01.028
|
[56] |
张兆翔. 溶剂热萃取法制备超纯煤的研究 [D].石家庄: 河北科技大学, 2014: 15−16.
ZHANG Zhaoxiang. Study on preparation of super-clean coal with thermal solvent extraction[D]. Shijiazhuang: Hebei University of Science and Technology, 2014: 15−46.
|
[57] |
ASHIDA R,MORIMOTO M,MAKINO Y,et al. Fractionation of brown coal by sequential high temperature solvent extraction[J]. Fuel,2009,88(8):1485−1490. doi: 10.1016/j.fuel.2008.12.003
|
[58] |
MIURA K,SHIMADA M,MAE K,et al. Extraction of coal below 350 °C in flowing non-polar solvent[J]. Fuel,2001,80(11):1573−1582. doi: 10.1016/S0016-2361(01)00036-9
|
[59] |
张志红. 煤溶剂抽提产物的选择性富集及分析 [D]. 太原: 太原理工大学, 2005: 20−48.
ZHANG Zhihong. The selecting collection of solvent extracts of coal[D]. Taiyuan: Taiyuan University of Technology, 2005: 20−48.
|
[60] |
张 宗. 低阶煤分级热溶萃取提质研究[D]. 武汉: 华中科技大学, 2016: 15−48.
ZHANG Zong. Study on thermal degradative solvent extraction of low-rank coals[D]. Wuhan: Huazhong University of Science & Technology, 2016: 15−48.
|
[61] |
LI C,TAKANOHASHI T,SAITO I,et al. Elucidation of mechanisms involved in acid pretreatment and thermal extraction during ashless coal production[J]. Energy & Fuels,2004,18(1):97−101.
|
[62] |
MIURA K,MAE K,SHINDO H,et al. Extraction of low rank coals by coal derived oils at 350 ℃ for producing clean fuels[J]. Journal of Chemical Engineering of Japan,2003,36(7):742−750. doi: 10.1252/jcej.36.742
|
[63] |
MIURA K,NAKAGAWA H,ASHIDA R,et al. Production of clean fuels by solvent skimming of coal at around 350 °C[J]. Fuel,2004,83(6):733−738.
|
[64] |
LI X,ZHANG Z,ZHANG L,et al. Degradative solvent extraction of low-rank coals by the mixture of low molecular weight extract and solvent as recycled solvent[J]. Fuel Processing Technology,2018,173:48−55. doi: 10.1016/j.fuproc.2018.01.005
|
[65] |
MICHIO,HAMANO. Call for proposal programs of NEDO (New Energy and Industrial Technology Development Organization)[J]. Journal of the Robotics Society of Japan,2001,19(8):937−940. doi: 10.7210/jrsj.19.937
|
[66] |
樊丽华, 杜敬文, 梁英华, 等. 无灰煤的热解行为及其在配煤中的添加效果[J]. 煤炭科学技术, 2017, 45(3): 185−190.
FAN Lihua, DU Jingwen, LIANG Huaying, et al. Pyrolysis behavior of hypercoal and its adding effect in blending coal[J]. Coal Science and Technology. 2017, 45(3): 185−190.
|
[67] |
堺康尔, 奥山宪幸, 吉田拓也, 等. 无灰煤的制造方法和无灰煤的制造装置[P]. 中国: ZL201780049047.9, 2018-04-09.
|
[68] |
堺康尔, 奥山宪幸, 木下繁, 等. 无灰煤的制造方法 [P]. 中国: ZL201280063050.3, 2014-03-17.
|
[69] |
JIAN Y M,XIAN L I,ZHU X Q,et al. Interaction between low-rank coal and biomass during degradative solvent extraction[J]. Journal of Fuel Chemistry and Technology,2019,47(1):14−22. doi: 10.1016/S1872-5813(19)30003-9
|
[70] |
MIURA K, ASHIDA R, XIAN L, et al. Upgrading of low-rank coal and biomass utilizing mild solvent treatment at around 350°C[C]//IEEE Conference on Clean Energy and Technology (CET). Kuala Lumpur, Malaysia, 2011.
|
[71] |
WANNAPEERA J,LI X,WORASUWANNARAK N,et al. Production of high-grade carbonaceous materials and fuel having similar chemical and physical properties from various types of biomass by degradative solvent extraction[J]. Energy & Fuels,2012,26(7):4521−4531.
|
[72] |
李 显. 一种生物质-低阶煤共热溶制备无灰煤的方法[P]. 中国:ZL 201780001785.6, 2017-11-01.
|
[73] |
惠 振. 气煤和焦煤热溶物的性质及其配煤炼焦时对焦炭质量影响研究[D]. 马鞍山: 安徽工业大学, 2016: 21−69.
HUI Zhen. Study on the properties of the thermal dissolution of gas and coking coals and the use their TDSFs in the coal blending for coke-making[D]. Maanshan: Anhui University of Technology, 2016: 21−69.
|
[74] |
SHUI H,ZHAO W,SHAN C,et al. Caking and coking properties of the thermal dissolution soluble fraction of a fat coal[J]. Fuel Processing Technology,2014,118:64−68. doi: 10.1016/j.fuproc.2013.08.013
|
[75] |
段小宝,申岩峰,孔 娇,等. 煤热溶技术及热溶物在配煤炼焦过程中的应用[J]. 化工进展,2018,37(11):4226−4236. doi: 10.16085/j.issn.1000-6613.2017-2419
DUAN Xiaobao,SHEN Yanfeng,KONG Jiao,et al. Thermal dissolution technology of coal and application of soluble portions in coal blending for coke-making[J]. Chemical Industry and Engineering Progress,2018,37(11):4226−4236. doi: 10.16085/j.issn.1000-6613.2017-2419
|
[76] |
卢田隆一,全 荣. 劣质煤利用煤高温溶剂萃取物炼焦[J]. 燃料与化工,2008,39(6):54−63. doi: 10.3969/j.issn.1001-3709.2008.06.024
LUTIAN Longyi,QUAN Rong. Coking of inferior coal using coal high-temperature solvent extract[J]. Fuel & Chemical Processes,2008,39(6):54−63. doi: 10.3969/j.issn.1001-3709.2008.06.024
|
[77] |
胡浩权. 煤直接转化制高品质液体燃料和化学品[J]. 化工进展, 2016, 35(12): 4096−4098.
HU Haoquan. Coal direct conversion to high quality liquid fuels and chemicals[J]. Chemical Industry and Engineering Progress, 2016, 35(12): 4096−4098.
|
[78] |
胡发亭,颜丙峰,王光耀,等. 我国煤制燃料油技术进展及工业化现状[J]. 洁净煤技术,2019,25(1):57−63. doi: 10.13226/j.issn.1006-6772.18122501
HU Fating,YAN Bingfeng,WANG Guangyao,et al. Technical progress and industrialization status of coal to fuel oil in China[J]. Clean Coal Technology,2019,25(1):57−63. doi: 10.13226/j.issn.1006-6772.18122501
|
[79] |
DERBYSHIRE F,STANSBERRY P. Comments on the reactivity of low-rank coals in liquefaction[J]. Fuel,1987,66(12):1741−1742. doi: 10.1016/0016-2361(87)90375-9
|
[80] |
SOLOMON P R,SERIO M A,DESPANDE G V,et al. Cross-linking reactions during coal conversion[J]. Energy & Fuels,1990,4(1):42−54.
|
[81] |
LI X,PRIYANTO D E,ASHIDA R,et al. Two-stage conversion of low-rank coal or biomass into liquid fuel under mild conditions[J]. Energy & Fuels,2015,29(5):3127−3133.
|
[82] |
KOYANO K,TAKANOHASHI T,SAITO I. Catalytic hydrogenation of hypercoal (ashless coal) and reusability of catalyst[J]. Energy and Fuels,2009,23(4):3652−3657.
|
[83] |
赵 欢,王 鑫,焦忠泽,等. 热溶解聚技术及其影响因素的研究现状[J]. 沈阳航空航天大学学报,2020,37(2):70−77. doi: 10.3969/j.issn.2095-1248.2020.02.010
ZHAO Huan,WANG Xin,JIAO Zhongze,et al. Research status of thermal dissolution technology and its factors[J]. Journal of Shenyang Aerospace University,2020,37(2):70−77. doi: 10.3969/j.issn.2095-1248.2020.02.010
|
[84] |
王亚杰, 左海滨, 王京秀, 等.中国HyperCoal清洁高值化应用研究现状与进展[J]. 工程科学学报,2021,43(12):1750−1760. doi: 10.3321/j.issn.1001-053X.2021.12.bjkjdxxb202112015
WANG Yajie,ZUO Haibin,WANG Jingxiu,et al. Research status and prospect of clean and high-value utilization of hyper-coal in China[J]. Chinese Journal of Engineering,2021,43(12):1750−1760. doi: 10.3321/j.issn.1001-053X.2021.12.bjkjdxxb202112015
|
[85] |
梁大明, 孙仲超. 煤基炭材料[M]. 北京: 化学工业出版社, 2011: 5−20.
|
[86] |
YANG J,NAKABAYASHI K,MIYAWAKI J,et al. Preparation of pitch based carbon fibers using hyper-coal as a raw material[J]. Carbon,2016,106:28−36. doi: 10.1016/j.carbon.2016.05.019
|
[87] |
YANG J,WU W,ZHANG X,et al. Improving spinnability of hyper-coal derived spinnable pitch through the hydrogenation with 1, 2, 3, 4-Tetrahydroquinoline[J]. C–Journal of Carbon Research,2018,4(3):46−46. doi: 10.3390/c4030046
|
[88] |
QIAN W,LI X,ZHU X,et al. Preparation of activated carbon nanofibers using degradative solvent extraction products obtained from low-rank coal and their utilization in supercapacitors[J]. RSC Adv,2020,10(14):8172−8180. doi: 10.1039/C9RA09966B
|
[89] |
李金宏,周岐雄,米红宇,等. 基于煤萃取物的类石墨状多孔炭的制备及其电容性能研究[J]. 无机材料学报,2016,31(1):39−46. doi: 10.15541/jim20150329
LI Jinhong,ZHOU Qixiong,MI Hongyu,et al. Preparation and capacitive properties of graphite-like porous carbon based on coal extracts[J]. Journal of Inorganic Materials,2016,31(1):39−46. doi: 10.15541/jim20150329
|
[90] |
樊丽华,王晓柳,侯彩霞,等. 褐煤基活性炭和无灰煤基活性炭性能对比研究[J]. 功能材料,2017,48(1):1244−1248.
FAN Lihua,WANG Xiaoliu,HOU Caixia,et al. Research on perfomance comparison of lignite-activated carbon and hypercoal-activated carbon[J]. Journal of Functional Materials,2017,48(1):1244−1248.
|
[91] |
LI X,ASHIDA R,MAKINO M,et al. Enhancement of gasification reactivity of low-rank coal through high-temperature solvent treatment[J]. Energy & Fuels,2014,28(9):5690−5695.
|
[92] |
崔咏梅,赵风云,刘彦华,等. 褐煤热萃取残渣处理含酚废水[J]. 河北科技大学学报,2013,34(1):40−43. doi: 10.7535/hbkd.2013yx01009
CUI Yongmei,ZHAO Fengyun,LIU Yanhua,et al. Treatment of phonolic watewater using lignite thermal extraction residue[J]. Journal of Hebei University of Science and Technology,2013,34(1):40−43. doi: 10.7535/hbkd.2013yx01009
|
[93] |
蔡 颋. 低阶煤热溶剂萃取残渣制备介孔炭的研究[D]. 武汉: 华中科技大学, 2015: 20−50.
CAI Ting, Study on preparation of mesoporous carbon from solvent extraction residue of low-rank coals[D]. Wuhan: Huazhong University of Science & Technology, 2015: 20−50.
|
[94] |
PRIYANTO D E. Degradative solvent extraction of low grade carbonaceous resources and the utilization of products for liquid fuels and carbon material[D]. Kyoto University, 2013: 15−40.
|
[95] |
罗化峰,乔元栋,徐青云,等. 大同煤温和超临界热溶-炭化耦合转化过程研究[J]. 洁净煤技术,2019,25(1):142−147. doi: 10.13226/j.issn.1006-6772.18091403
LUO Huafeng,QIAO Yuandong,XU Qingyun,et al. Study on conversion process bymild supercritical thermal extraction coupled with carbonization technology of Datong Caol[J]. Clean Coal Technology,2019,25(1):142−147. doi: 10.13226/j.issn.1006-6772.18091403
|
[96] |
陈 悦,陈超美,刘则渊,等. CiteSpace知识图谱的方法论功能[J]. 科学学研究,2015,33(2):242−253. doi: 10.3969/j.issn.1003-2053.2015.02.009
CHEN Yue,CHEN Chaomei,LIU Zeyuan,et al. The methodology function of Cite Space mapping knowledge domains[J]. Studies in Science of Science,2015,33(2):242−253. doi: 10.3969/j.issn.1003-2053.2015.02.009
|
[97] |
侯海燕,陈超美,刘则渊,等. 知识计量学的交叉学科属性研究[J]. 科学学研究,2010,28(3):328−332. doi: 10.16192/j.cnki.1003-2053.2010.03.020
HOU Haiyan,CHEN Chaomei,LIU Zeyuan,et al. Interdisciplinary feature of knowmetrics[J]. Studies in Science of Science,2010,28(3):328−332. doi: 10.16192/j.cnki.1003-2053.2010.03.020
|
[98] |
WANNAPEERA J,LI X,WORASUWANNARAK N,et al. Production of high-grade carbonaceous materials and fuel having similar chemical and physical properties from various types of biomass by degradative solvent extraction[J]. Energy & fuels,2012,26(7):4521−4531.
|
[99] |
ZHU X Q,ZHANG Z,ZHOU Q X,et al. Upgrading and multistage separation of rice straw by degradative solvent extraction[J]. Journal of Fuel Chemistry and Technology,2015,43(4):422−428. doi: 10.1016/S1872-5813(15)30010-4
|
[100] |
FAN X,YU G,ZHAO Y P,et al. Molecular Characteristics of Shenfu coal characterized by mass spectrometers with three ion sources[J]. Chemistry Select,2018,37(3):10383−10387. doi: 10.1002/slct.201802238
|
1. |
张吉雄,黄书翔,王洪涛,王海宾,周楠,邓雪杰. 巨厚含水砂岩顶板煤层多元灾害协同防控技术研究进展. 采矿与安全工程学报. 2025(01): 1-15 .
![]() | |
2. |
孟凡非,浦海,倪宏阳,卞正富. 关闭矿井采空区破碎岩体再断裂机制及空隙结构演化特性. 煤炭科学技术. 2024(02): 104-114 .
![]() | |
3. |
刘琪,苏伟,张瑞瑛,李延朋,冯绪,杨亮. 深部矿井煤炭-地热协同开采系统研究. 煤炭科学技术. 2024(03): 87-94 .
![]() | |
4. |
肖伟. 煤矿矿井水处理技术及资源化利用研究现状. 煤化工. 2024(02): 107-112 .
![]() |