Advance Search
WANG Yuli,LU Huijuan,YANG Yujie. The effect of fluorogypsum on the properties of high-water filling materials[J]. Coal Science and Technology,2023,51(6):42−51. DOI: 10.13199/j.cnki.cst.2022-0248
Citation: WANG Yuli,LU Huijuan,YANG Yujie. The effect of fluorogypsum on the properties of high-water filling materials[J]. Coal Science and Technology,2023,51(6):42−51. DOI: 10.13199/j.cnki.cst.2022-0248

The effect of fluorogypsum on the properties of high-water filling materials

Funds: 

National Natural Science Foundation of China (51678220)

More Information
  • Received Date: March 26, 2022
  • Available Online: June 02, 2023
  • Filling mining is an important way to realize the green development of mines. High-water filling materials have been widely used because of their short setting time. In this material, 40% of the raw material is natural anhydrite, and the main component is anhydrous calcium sulfate (CaSO4). Fluorogypsum is an industrial solid waste produced in the production of hydrofluoric acid. Its main composition is type II CaSO4. In order to explore the influence of fluorogypsum (F1, lime content of 3%; F2, lime content of 5%) on the performance of high water filling materials, the influence of fluorogypsum content on the setting time and 1, 7 and 28 d compressive strength of high-water filling materials at different experimental water temperatures and water binder ratio of 3∶1 was studied. At the same time, the hydration mechanism was studied by XRD, SEM, and TG-DTA. The results show that the setting time of high-water filling material increases gradually with the increase of fluorogypsum content at different experimental water temperatures. With the increase of F1 content, the low content has little effect on the compressive strength of high-water filling materials at different ages. When its content is higher than 20%, the compressive strength of high-water filling materials at 1, 7, and 28 days decrease gradually; with the increase of F2 content, the compressive strength of the high water filling material increases gradually at 1, 7, and 28 d. At different ages, compared with the blank group, the F2 content is 80%, and the maximum growth rate of its compressive strength is 29.7%. Microscopic analysis shows that the hydration products of high-water filling materials mainly include AFt, Al (OH) 3 (gel), and CaSO4 · 2H2O. After hydration for 1 d, the hydration rate of the F2 group (80% of F2) is fast and the amount of AFt is the largest, while the hydration rate of the blank group is the smallest and the amount of AFt is the smallest; After 28 d of hydration, the amount of aft produced in the three groups was the same. At the same time, based on the hydration kinetics of high-water filling material, the influence of fluorogypsum on the hydration process of high-water filling material is analyzed. It is concluded that fluorogypsum can replace natural anhydrite in high-water filling material systems and be applied to high-water filling material systems.

  • [1]
    ZUO J,HONG Z,XIONG Z,et al. Influence of different W/C on the performances and hydration progress of dual liquid high water backfilling material[J]. Construction and Building Materials,2018,190(30):910−917.
    [2]
    张文生,李北星,周明凯,等. 高水充填材料的胶凝、浆体结构和稳定性[J]. 中国有色金属学报,1998,8(2):185−188. doi: 10.19476/j.ysxb.1004.0609.1998.s2.051
    [3]
    胡炳南,刘鹏亮,崔 锋,等. 我国充填采煤技术回顾及发展现状[J]. 煤炭科学技术,2020,48(9):39−47. doi: 10.13199/j.cnki.cst.2020.09.004

    HU Bingnan,LIU Pengliang,CUI Feng,et al. Review and development status of backfill coal mining technology in China[J]. Coal Science and Technology,2020,48(9):39−47. doi: 10.13199/j.cnki.cst.2020.09.004
    [4]
    郭泰民. 工业副产石膏应用技术[M]. 北京: 中国建材工业出版社, 2010.
    [5]
    马正先,郭 浩,杭鑫坤,等. 应用改性的氟石膏制备专用砌筑材料[J]. 矿产综合利用,2016(6):55−60.

    MA Zhengxian,GUO Hao,HANG Xinkun,et al. Research on preparing special masonry materials by using modified fluorgypsum[J]. Multipurpose Utilization of Mineral Resources,2016(6):55−60.
    [6]
    谢建海,亢虎宁,向仁科,等. 氟石膏复合胶凝材料的性能研究[J]. 硅酸盐通报,2013,32(4):772−775. doi: 10.16552/j.cnki.issn1001-1625.2013.04.016

    XIE Jianhai,KANG Huning,XIANG Renke,et al. Study on performance of fluorogypsum composite cementitious material[J]. Bulletin of the Chinese Ceramic Society,2013,32(4):772−775. doi: 10.16552/j.cnki.issn1001-1625.2013.04.016
    [7]
    李明卫. 氟石膏资源化应用研究[D]. 武汉: 武汉理工大学, 2009.

    LI Mingwei. Research on the application of fluorgypsum resource [D]. Wuhan: Wuhan University of Technology, 2009
    [8]
    WANG Y,YU J,WANG J,et al. Effects of aluminum sulfate and quicklime/fluorgypsum ratio on the properties of calcium sulfoaluminate (CSA) cement-based double liquid grouting materials[J]. Materials,2019,12(8):1222. doi: 10.3390/ma12081222
    [9]
    HUANG X,JiIANG M,ZHAO X,et al. Mechanical properties and hydration mechanisms of high-strength fluorogypsum-blast furnace slag-based hydraulic cementitious binder[J]. Construction and Building Materials,2016,127:137−143. doi: 10.1016/j.conbuildmat.2016.09.152
    [10]
    BIGDELI Y,BARBATO M,GUTIERREZ-WING M T,et al. Development of new pH-adjusted fluorogypsum-cement-fly ash blends: Preliminary investigation of strength and durability properties[J]. Construction and Building Materials,2018,182:646−656. doi: 10.1016/j.conbuildmat.2018.06.086
    [11]
    GARG M,PUNDIR A. Investigation of properties of fluorogypsum-slag composite binders-Hydration, strength and microstructure[J]. Cement and Concrete Composites,2014,45:227−233. doi: 10.1016/j.cemconcomp.2013.10.010
    [12]
    王 丽,陈红霞,赵金平,等. 氟石膏胶凝材料激发试验研究[J]. 新型建筑材料,2012,39(11):68−70. doi: 10.3969/j.issn.1001-702X.2012.11.019

    WANG Li,CHEN Hongxia,ZHAO Jinping,et al. Experimental research on fluorogypsum cementitious material by activation[J]. New Building Materials,2012,39(11):68−70. doi: 10.3969/j.issn.1001-702X.2012.11.019
    [13]
    阎培渝,游 轶. 在不同条件养护的氟石膏粉煤灰胶结材的水化硬化性能[J]. 硅酸盐学报,1998(6):8−13. doi: 10.14062/j.issn.0454-5648.1998.06.002

    YAN Peiyu,YOU Yi. Hydraulic properties of the binder consisting of fluorgypsum and fly ash under different curing conditions[J]. Journal of the Chinese Ceramic Society,1998(6):8−13. doi: 10.14062/j.issn.0454-5648.1998.06.002
    [14]
    YAN P,YANG W,Qin X,et al. Microstructure and properties of the binder of fly ash-fluorogypsum-Portland cement[J]. Cement and Concrete Research,1999,29(3):349−354. doi: 10.1016/S0008-8846(98)00214-2
    [15]
    YAN P,YANG W. The cementitious binder derived with fluorogypsum and low quality of fly ash[J]. Cement and Concrete Research,2000,30(2):275−280. doi: 10.1016/S0008-8846(99)00245-8
    [16]
    ESCALANTE-GARCIA J I,RIOS-ESCOBAR M,GOROKHOVSKY A,et al. Fluorgypsum binders with OPC and PFA additions, strength and reactivity as a function of component proportioning and temperature[J]. Cement and Concrete Composites,2008,30(2):88−96. doi: 10.1016/j.cemconcomp.2007.05.015
    [17]
    马成龙. 赤泥-硫铝酸盐水泥高水充填材料性能及对环境的影响[J]. 新型建筑材料, 2020, 47(4): 60-64.

    MA Chenglong. Properties of red mud-sulfoaluminate cement high water filling material and its impact on the environment [J]. New Building Materials, 2020, 47(4): 60-64.
    [18]
    董 越,杨志强,谦 高. 钢渣对矿渣基高水充填材料性能的影响及强度预测[J]. 硅酸盐通报,2017,36(11):3841−3847. doi: 10.16552/j.cnki.issn1001-1625.2017.11.044

    DONG Yue,YANG Zhiqiang,GAO Qian. Influence of steel slag content on portland based high-water backfilling materials and strength forecasting[J]. Bulletin of the Chinese Ceramic Society,2017,36(11):3841−3847. doi: 10.16552/j.cnki.issn1001-1625.2017.11.044
    [19]
    冯 波,刘长武,谢 辉,等. 粉煤灰改性高水材料力学性能试验研究及机理分析[J]. 工程科学学报,2018,40(10):1187−1195.

    FENG Bo,LIU Changwu,XIE Hui,et al. Experimental study and analysis of the mechanical properties of high-water-content materials modified with fly ash[J]. Chinese Journal of Engineering,2018,40(10):1187−1195.
    [20]
    孙道胜,胡梅梅,王爱国,等. 大掺量粉煤灰高水充填材料的研制[J]. 硅酸盐通报,2016,35(4):1074−1079. doi: 10.16552/j.cnki.issn1001-1625.2016.04.015

    SUN Daosheng,HU Meimei,WANG Aiguo,et al. Research and preparation of high water filling material with high dosage of fly ash[J]. Bulletin of the Chinese Ceramic Society,2016,35(4):1074−1079. doi: 10.16552/j.cnki.issn1001-1625.2016.04.015
    [21]
    王 成,洪紫杰,熊祖强,等. 重质碳酸钙对新型高水充填材料的影响[J]. 煤矿安全,2015,46(12):31−34. doi: 10.13347/j.cnki.mkaq.2015.12.010

    WANG Cheng,HONG Zijie,XIONG Zuqing,et al. Influence of heavy calcium carbonate on new type of high water filling material[J]. Safety in Coal Mines,2015,46(12):31−34. doi: 10.13347/j.cnki.mkaq.2015.12.010
    [22]
    ZHANG Y,WANG Y,LI T,et al. Effects of lithium carbonate on performances of sulphoaluminate cement-based dual liquid high water material and its mechanisms[J]. Construction and Building Materials,2018,161:374−380. doi: 10.1016/j.conbuildmat.2017.11.130
    [23]
    CUI K,LAU D,ZHANG Y,et al. Mechanical properties and mechanism of nano-CaCO3 enhanced sulphoaluminate cement-based reactive powder concrete[J]. Construction and Building Materials,2021,309(9):125099.
    [24]
    YU J,QIAN J,TANG J,et al. Effect of ettringite seed crystals on the properties of calcium sulphoaluminate cement[J]. Construction and Building Materials,2019,207:249−257. doi: 10.1016/j.conbuildmat.2019.02.130
    [25]
    GARCIA-MATE M,DE LA TORREA A G,LEON-REINA L,et al. Effect of calcium sulfate source on the hydration of calcium sulfoaluminate eco-cement[J]. Cement and Concrete Composites,2015,55:53−61. doi: 10.1016/j.cemconcomp.2014.08.003
  • Cited by

    Periodical cited type(5)

    1. 张威,蔡云香,李璐洋,陈胜强,刘永川. 生石灰对氟石膏胶凝材料性能影响研究. 新型建筑材料. 2025(05): 133-136+149 .
    2. 陈志松,徐佑林,江泽标,肖兵,吴少康,张际涛. 基于低标硫铝酸盐水泥熟料的高水材料物理力学性能及应用. 采矿与岩层控制工程学报. 2024(02): 146-156 .
    3. 张嘉勇,邱艳兵,崔啸,郭立稳,郑庆学,武建国,关联合. 基于响应面法的采空区充填材料配比优化研究. 金属矿山. 2024(09): 26-33 .
    4. 谢顺昕,李育彪,杨旭,宋少先,陈鹏,彭智敏. 萤石法制备氟化氢气体动力学的Fluent模拟研究. 非金属矿. 2024(06): 9-13 .
    5. 侯典臣,郇恒恒. 工业废料氟石膏基充填材料试验研究. 煤矿现代化. 2023(04): 58-61 .

    Other cited types(1)

Catalog

    Article views (100) PDF downloads (29) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return