WANG Ding,ZHANG Jie,YANG Bolun,et al. Research progress of typical process analysis and techno-economic research on direct air capture of carbon dioxide[J]. Coal Science and Technology,2023,51(S1):215−221
. DOI: 10.13199/j.cnki.cst.2022-0236Citation: |
WANG Ding,ZHANG Jie,YANG Bolun,et al. Research progress of typical process analysis and techno-economic research on direct air capture of carbon dioxide[J]. Coal Science and Technology,2023,51(S1):215−221 . DOI: 10.13199/j.cnki.cst.2022-0236 |
In order to promote social development, green transformation and achieve the goal of carbon peak and carbon neutralization, direct air capture (DAC), as a technology that can achieve net zero carbon emissions, has attracted more and more attention. DAC technology focuses on the capture and recovery of CO2 from distributed sources such as atmosphere and vehicles, which can effectively reduce the atmospheric CO2 concentration. At present, the challenge of DAC technology development mainly lies in the high cost of equipment and operation.Therefore, it is described from three aspects: DAC process overview, key process modules and technical and economic analysis. The process flow and adsorption materials of two DAC technologies based on alkaline solution and solid adsorbent are emphatically introduced, and the key modules such as power / heat supply, CO2 absorption/desorption, CO2 compression storage / transportation are summarized. The energy consumption and economic cost of the two DAC technologies are compared.It is found that the energy consumption per ton of CO2 capture of DAC technology based on alkaline solution absorption and solid adsorbent absorption is
[1] |
STEIN A. Mauna loa observation data of monaloa observatory in Hawaii [DB/OL]. [2022-02-14]. the Untied States: NOAA, https://gml.noaa.gov/ccgg/trends/mlo.html.
|
[2] |
KOVEN C D,RINGEVAL B,FRIEDLINGSTEIN P,et al. Permafrost carbon-climate feedbacks accelerate global warming[J]. Proceedings of the National Academy of Sciences,2011,108(36):14769−14774. doi: 10.1073/pnas.1103910108
|
[3] |
LACKNER K, ZIOCK H J, GRIMES P. Carbon dioxide extraction from air: is it an option?[R]. Los Alamos, NM (United States): Los Alamos National Lab. (LANL), 1999.
|
[4] |
BRUCE P. Royal society sets out 12 technology and climate research priorities for delivering net zero carbon emissions by 2050[R]. England: The Royal Society, 2021.
|
[5] |
MARJORIE B. Sizewell c and partners awarded direct air capture funding[R]. France: EDF Energy, 2022.
|
[6] |
GRANHOLM J M. DOE announces $12 million for direct air capture technology[R]. the Untied States: Department of Energy, 2021.
|
[7] |
OZKAN M,NAYAK S P,RUIZ A D,et al. Current status and pillars of direct air capture technologies[J]. iScience,2022,25(4):103990. doi: 10.1016/j.isci.2022.103990
|
[8] |
KEITH D W,HA-DUONG M,STOLAROFF J K,et al. Climate strategy with CO2 capture from the air[J]. Climatic Change,2006,74(1/3):17−45.
|
[9] |
MAHMOUDKHANI M,HEIDEL K R,FERREIRA J C,et al. Low energy packed tower and caustic recovery for direct capture of CO2 from air[J]. Energy Procedia,2009,1(1):1535−1542. doi: 10.1016/j.egypro.2009.01.201
|
[10] |
HOLMES G,NOLD K,WALSH T,et al. Outdoor prototype results for direct atmospheric capture of carbon dioxide[J]. Energy Procedia,2013,37:6079−6095. doi: 10.1016/j.egypro.2013.06.537
|
[11] |
BACIOCCHI R,STORTI G,MAZZOTTI M,et al. Process design and energy requirements for the capture of carbon dioxide from air[J]. Chemical Engineering and Processing,2006,45(12):1047−1058. doi: 10.1016/j.cep.2006.03.015
|
[12] |
STOLAROFF J K,KEITH D W,LOWRY G V,et al. Carbon dioxide capture from atmospheric air using sodium hydroxide spray[J]. Environmental Science & Technology,2008,42(8):2728−2735.
|
[13] |
NIKULSHINA V,GEBALD C,STEINFELD A,et al. CO2 capture from atmospheric air via consecutive CaO-carbonation and CaCO3-calcination cycles in a fluidized-bed solar reactor[J]. Chemical Engineering Journal,2009,146(2):244−248. doi: 10.1016/j.cej.2008.06.005
|
[14] |
CHOI S,DRESE J H,EISENBERGER P M,et al. Application of amine-tethered solid sorbents for direct CO2 capture from the ambient air[J]. Environmental Science & Technology,2011,45(6):2420−2427.
|
[15] |
DEREVSCHIKOV V S,VESELOVSKAYA J V,KARDASH T Y,et al. Direct CO2 capture from ambient air using K2CO3/Y2O3 composite sorbent[J]. Fuel,2014,127:212−218. doi: 10.1016/j.fuel.2013.09.060
|
[16] |
孙秩敏,王 涛,刘 军,等. 湿法再生吸附剂制备及用于大气CO2的直接捕集[J]. 环境工程学报,2014,8(4):1567−1572.
SUN Zhimin,WANG Tao,LUN Jun,et al. Preparation of moisture swing adsorbent and performance test for CO2 capture from ambient air[J]. Chinese Journal of Environmental Engineering,2014,8(4):1567−1572.
|
[17] |
张 杰,郭 伟,张 博,等. 空气中直接捕集CO2技术研究进展[J]. 洁净煤技术,2021,27(2):57−68.
ZHANG Jie,GUO Wei,ZHANG Bo,et al. Research progress of direct CO2 capture technology in air[J]. Clean Coal Technology,2021,27(2):57−68.
|
[18] |
OSCHATZ M,ANTONIETTI M. A search for selectivity to enable CO2 capture with porous adsorbents[J]. Energy & Environmental Science,2018,11(1):57−70.
|
[19] |
NUGENT P,BELMABKHOUT Y,BURD S D,et al. Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation[J]. Nature,2013,495:80−84. doi: 10.1038/nature11893
|
[20] |
FREITAS J R,Robert A. The nanofactory solution to global climate change: atmospheric carbon capture[J]. IMM Rep,2015,45:1−86.
|
[21] |
WILSON S M,TEZEL F H. Direct dry air capture of CO2 using VTSA with faujasite zeolites[J]. Industrial & Engineering Chemistry Research,2020,59(18):8783−8794.
|
[22] |
BOARD O S. Negative emissions technologies and reliable sequestration: a research agenda[R]. Washington (DC): National Academies Press (US), 2018.
|
[23] |
PONTIUS F W, Water quality and treatment: a handbook of community water supplies[M]. New York: American Water Works Association, McGraw-Hill, 1999: 1194−1194.
|
[24] |
KEITH D W,HOLMES G,ANGELO D S,et al. A process for capturing CO2 from the atmosphere[J]. Joule,2018,2(8):1573−1594. doi: 10.1016/j.joule.2018.05.006
|
[25] |
MAZZOTTI M,BACIOCCHI R,DESMOND M J,et al. Direct air capture of CO2 with chemicals: optimization of a two-loop hydroxide carbonate system using a countercurrent air-liquid contactor[J]. Climatic Change,2013,118(1):119−135. doi: 10.1007/s10584-012-0679-y
|
[26] |
STEDHAM T. CE Demonstration plant a year in review[EB/OL]. [2021-11-08]. Squamish, Canada, https://carbonengineering.com/news-updates/pilot-plant-review
|
[27] |
LI C,SHI H,CAO Y,et al. Modeling and optimal operation of carbon capture from the air driven by intermittent and volatile wind power[J]. Energy,2015,87:201−211. doi: 10.1016/j.energy.2015.04.098
|
[28] |
TERLOUW T,TREYER K,BAUER C,et al. Life cycle assessment of direct air carbon capture and storage with low-carbon energy sources[J]. Environmental Science Technology,2021,55(16):11397−11411. doi: 10.1021/acs.est.1c03263
|
[29] |
HERZOG H. Direct air capture: a process engineer's view (low-carbon energy center webinar)[R]. Massachusetts Institute of Technology, 2019.
|
[30] |
PING E, SAKWA-NOVAK M, EISENBERGER P. Global Thermostat low cost direct air capture technology[A]. International Conference on Negative CO2 Emissions[C]. Gothenburg, 2018: 22−24.
|
[31] |
VOGEL A B. The raw material that comes from air[R]. Swiss Federal Office of Energy, 2017.
|
[32] |
ROESTENBERG T. Antecy solar fuels development[R]. Shell Global Solutions International B. V. , Amsterdam, 2015.
|
[33] |
SINHA A,DARUNTE L A,JONES C W,et al. Systems design and economic analysis of direct air capture of CO2 through temperature vacuum swing adsorption using MIL-101(Cr)-PEI-800 and mmen-Mg-2(dobpdc) MOF adsorbents[J]. Industrial & Engineering Chemistry Research,2017,56(3):750−764.
|
[34] |
KULKARNI A R,Sholl D S. Analysis of equilibrium-based TSA processes for direct capture of CO2 from air[J]. Industrial & Engineering Chemistry Research,2012,51(25):8631−8645.
|
[35] |
AZARABADI H,LACKNER K. A sorbent-focused techno-economic analysis of direct air capture[J]. Applied Energy,2019,250:959−975. doi: 10.1016/j.apenergy.2019.04.012
|
1. |
张明,瞿子涵,余建飞,张爽. 冬冷地区乡村沼气发电耦合碳捕集用于供暖的研究与应用. 建筑科学. 2025(02): 272-278 .
![]() | |
2. |
郑健飞,陈晓平,马吉亮,梁财. 用于直接空气捕集的钾基吸附剂的掺杂改性. 燃烧科学与技术. 2025(02): 197-204 .
![]() | |
3. |
张闳肆. 系统论视角下碳中和举国体制的再认识. 自然辩证法通讯. 2025(06): 117-126 .
![]() | |
4. |
夏奡,任柯欣,张敬苗,黄云,朱贤青,朱恂,廖强. 基于内置光纤/导光管反应器的微藻固碳减排研究. 煤炭科学技术. 2024(02): 329-337 .
![]() | |
5. |
廖昌建,张可伟,王晶,曾翔宇,金平,刘志禹. 直接空气捕集二氧化碳技术研究进展. 化工进展. 2024(04): 2031-2048 .
![]() | |
6. |
余斌鹏,谈磊,王鼎,王利民,向小凤,王志超,晋中华,杨伯伦,吴志强. 直接空气捕集CO_2典型工艺与关键装置开发进展. 煤炭学报. 2024(10): 4203-4221 .
![]() | |
7. |
黄文慧,宋小军,王明宇,孔艳强. 空气中CO_2直接捕捉逆流式吸收塔特性研究. 电力科技与环保. 2024(06): 657-668 .
![]() |