Citation: | WANG Zhiyong,TIAN Zeqi,GUO Xu,et al. Occurrence and genetic mechanism of pyrite in the No. 9 coal seam in magmatic erosion area of the Handan coalfield[J]. Coal Science and Technology,2023,51(8):192−199. DOI: 10.13199/j.cnki.cst.2022-0226 |
The No. 9 coal of Yunjialing Coal Mine in Handan Coalfield, which is subject to obvious magmatic intrusion, is taken as the research object. Optical microscope observation, electron probe energy spectrometry (EPMA-EDS), X-ray diffractometer (XRD), X-ray fluorescence spectrometry (XRF) and other analytical tests were used to analyze the enrichment characteristics of whole sulfur, sulfur forms and minerals, to study the occurrence of sulfur and pyrite in the coals, and to explore the sources of different types of pyrite. The results show that the No. 9 coal of Yunjialing Coal Mine in Handan Coalfield is a high-sulfur coal (0.61%~7.12%), sulfide sulfur is the main form of sulfur in the coal (1.18%~4.90%), followed by organic sulfur (0.56%~2.16%) with a little sulphate sulfur (0.01%~0.06%). The No. 9 coal of Yunhailing coal mine was deposited in the transitional environment of sea and land phases, and seawater intrusion provided abundant sulfur source for the No. 9 coal seam, the gas-liquid materials brought about by neutral magmatism during the Yanshan period elevate the total sulfur content in the No. 9 coal of the Yunjialing Caol Mine, especially the total sulfur content of the upper coal plies are significantly higher than the total sulfur content of the whole coal seam. The microscopic occurrence of pyrite in the No. 9 coal mainly includes massive pyrite, disseminated pyrite and fissure-filled pyrite, and is characterized by multi-stage evolution. Massive pyrite is mainly formed in the early diagenetic stage, the high temperature and gas-liquid materials brought about by neutral magmatism during the Yanshan period modified the morphology of pyrite in the coal, resulting in the activation and recrystallization of pyrite in the coal into a massive fraction. Inorganic sulfur from the high-temperature-affected portion of the pyrite diffused into the surrounding coal body and sequestered as organic sulfur, increasing the organic sulfur content of the upper coal plies.
[1] |
CHOU C L. Sulfur in coals: A review of geochemistry and origins[J]. International Journal of Coal Geology,2012,100:1−13. doi: 10.1016/j.coal.2012.05.009
|
[2] |
DAI Shifeng,FINKELMAN R B,FRENCH D,et al. Modes of occurrence of elements in coal: A critical evaluation[J]. Earth-Science Reviews,2021,222:103815. doi: 10.1016/j.earscirev.2021.103815
|
[3] |
HU G,LIUG,WU D,et al. Geochemical behavior of hazardous volatile elements in coals with different geological origin during combustion[J]. Fuel,2018,233:361−376. doi: 10.1016/j.fuel.2018.06.069
|
[4] |
WARD C R. Analysis, origin and significance of mineral matter in coal: An updated review[J]. International Journal of Coal Geology,2016,165:1−27. doi: 10.1016/j.coal.2016.07.014
|
[5] |
FINKELMAN R B,DAI S,FRENCH D. The importance of minerals in coal as the hosts of chemical elements: A review[J]. International Journal of Coal Geology,2019,212:103251. doi: 10.1016/j.coal.2019.103251
|
[6] |
李 碧,徐阳东,汤立方. 织纳煤田红梅煤矿煤中硫分特征及其成煤环境研究[J]. 煤炭科学技术,2018,46(5):197−204. doi: 10.13199/j.cnki.cst.2018.05.032
LI Bi,XU Yangdong,TANG Lifang. Study on sulfur characteristics and coal paleoenvironment in Hongmei Mine of Zhina Coalfield[J]. Coal Science and Technology,2018,46(5):197−204. doi: 10.13199/j.cnki.cst.2018.05.032
|
[7] |
崔崇海. 广西各成煤时代煤中硫赋存规律及控制因素分析[J]. 中国煤炭地质,2018,30(S2):24−27,47. doi: 10.3969/j.issn.1674-1803.2018.S2.07
CUI Chonghai. Sulfur hosting pattern in coal and controlling factor analysis of coal with different forming ages in Guangxi[J]. Coal Geology of China,2018,30(S2):24−27,47. doi: 10.3969/j.issn.1674-1803.2018.S2.07
|
[8] |
HOWER J C,FU B,DAI S. Geochemical partitioning from pulverized coal to fly ash and bottom ash[J]. Fuel,2020,279:118542. doi: 10.1016/j.fuel.2020.118542
|
[9] |
KOLLER A,SCOTT C,LEFTICARIU L,et al. Trace element partitioning during coal preparation: Insights from US Illinois Basin coals[J]. International Journal of Coal Geology,2021,243:103781. doi: 10.1016/j.coal.2021.103781
|
[10] |
SHAHHOSSEINI M,ARDEJANI F D,BAAFI E. Geochemistry of rare earth elements in a neutral mine drainage environment, Anjir Tangeh, northern Iran[J]. International Journal of Coal Geology,2017,183:120−135. doi: 10.1016/j.coal.2017.10.004
|
[11] |
BERNER R A. Sedimentary pyrite formation: An update[J]. Geochimica et Cosmochimica Acta,1984,48(4):605−615. doi: 10.1016/0016-7037(84)90089-9
|
[12] |
唐跃刚,任德贻. 煤中黄铁矿的成因研究[J]. 地质评论,1996,42(1):64−70.
TANG Yuegang,REN Deyi. Genesis of pyrite in coal[J]. Geological Revew,1996,42(1):64−70.
|
[13] |
刘大锰,杨 起,周春光,等. 华北晚古生代煤中黄铁矿赋存特征与地质成因研究[J]. 地球化学,1999,28(4):340−350. doi: 10.3321/j.issn:0379-1726.1999.04.004
LIU Dameng,YANG Qi,ZHOU Chunguang,et al. Occurrence character istics and geological genesis of pyrite in late Paleozoic coal in North China[J]. Geochimica,1999,28(4):340−350. doi: 10.3321/j.issn:0379-1726.1999.04.004
|
[14] |
DAI Shifeng,REN Deyi. Effects of magmatic intrusion on mineralogy and geochemistry of coals from the Fengfeng−Handan Coalfield, Hebei, China[J]. Energy & Fuels,2007,21(3):1663−1673.
|
[15] |
崔崇海. 邯邢煤田煤系沉积相及聚煤规律分析[J]. 河北工程大学学报(自然科学版),2017,34(4):84−89.
CUI Chonghai. The analysis of sedimentary facies and coal accumulation of coal measure strata in Hanxing Coal field[J]. Journal of Hebei University of Engineering (Natural Science Edition),2017,34(4):84−89.
|
[16] |
CHEN J,LIU G,LI H,et al. Mineralogical and geochemical responses of coal to igneous intrusion in the Pansan Coal Mine of the Huainan coalfield, Anhui, China[J]. International Journal of Coal Geology,2014,124:11−35. doi: 10.1016/j.coal.2013.12.018
|
[17] |
张明杰,李 凯,付 帅. 河北武安云驾岭煤矿2#煤层瓦斯赋存主控地质因素分析[J]. 中国煤炭地质,2014,26(2):25−29. doi: 10.3969/j.issn.1674-1803.2014.02.06
ZHANG Mingjie,LI Kai,FU Shuai. Analysis of coal No. 2 main gas hosting controlling geological factors in Yunjialing Coalmine, Wuan, Hebei[J]. Coal Geology of China,2014,26(2):25−29. doi: 10.3969/j.issn.1674-1803.2014.02.06
|
[18] |
DAI S,BECHTEL A,EBLE C F,et al. Recognition of peat depositional environments in coal: A review[J]. International Journal of Coal Geology,2020,219:103383. doi: 10.1016/j.coal.2019.103383
|
[19] |
DAI S,HOWER J C,FINKELMAN R B,et al. Organic associations of non-mineral elements in coal: A review[J]. International Journal of Coal Geology,2020,218:103347. doi: 10.1016/j.coal.2019.103347
|
[20] |
DUAN P,WANG W,LIU X,et al. Distribution of As, Hg and other trace elements in different size and density fractions of the Reshuihe high-sulfur coal, Yunnan Province, China[J]. International Journal of Coal Geology,2017,173:129−141. doi: 10.1016/j.coal.2017.02.013
|
[21] |
WAGNER M,WACHOWIAK J,KOWALCZYK J,et al. Petrographic and mineralogical studies of fossil charcoal from Sierra de Bahoruco (Barahona Province, Dominican Republic)[J]. International Journal of Coal Geology,2017,173:142−149. doi: 10.1016/j.coal.2017.03.001
|
[22] |
葛运培,谢光前. 煤中黄铁矿及其毗邻的有机硫[J]. 燃料化学学报,1992,20(1):92−97.
GE Yunpei,XIE Guangqian. Pyrite and its adjacent organic sulfur in coal[J]. Journal of Fuel Chemistry and Technology,1992,20(1):92−97.
|
[23] |
HUANG F,XIN S,MI T,et al. Study of pyrite transformation during coal samples heated in CO2 atmosphere[J]. Fuel,2021,292:120269. doi: 10.1016/j.fuel.2021.120269
|
[24] |
汤达祯,杨 起,康西栋,等. 华北晚古生代成煤沼泽微环境与煤中硫的成因关系研究[J]. 中国科学:地球科学,2000,30(6):584−591.
TANG Dazhen,YANG Qi,KANG Xidong,et al. Late Paleozoic coal-forming swamp microenvironment and sulfur in coal in North China Studies on causal correlation[J]. Scientia Sinica Terrae,2000,30(6):584−591.
|
[25] |
秦身钧,徐 飞,崔 莉,等. 煤型战略关键微量元素的地球化学特征及资源化利用[J]. 煤炭科学技术,2022,50(3):1−38. doi: 10.1016/j.coal.2016.07.014
QIN Shenjun,XU Fei,CUI Li,et al. Geochemistry characteristics and resource utilization of strategically critical trace elements from coal-related resources[J]. Coal Science and Technology,2022,50(3):1−38. doi: 10.1016/j.coal.2016.07.014
|
[26] |
ZHOU M,Dai S,WANG Z,et al. The Sr isotope signature of Wuchiapingian semi-anthracites from Chongqing, southwestern China: Indication for hydrothermal effects[J]. Gondwana Research,2022,103:522−541. doi: 10.1016/j.gr.2021.11.007
|
[27] |
张杰芳,刘桂建,付 彪,等. 贵州晚二叠世高硫煤中黄铁矿的赋存特征及其地质成因[J]. 煤炭学报,2018,43(4):1094−1103. doi: 10.13225/j.cnki.jccs.2017.1144
ZHANG Jiefang,LIU Guijian,FU Biao,et al. Occurrence and geological gensis of pyrite in permian high sulfur coal Guizhou Province, China[J]. Journal of Coal Society,2018,43(4):1094−1103. doi: 10.13225/j.cnki.jccs.2017.1144
|
[28] |
LARGE R R,HALPIN J A,DANYUSHEVSKY L V,et al. Trace element content of sedimentary pyrite as a new proxy for deep-time ocean-atmosphere ecolution[J]. Earth and Planetary Science Letters,2014,389:209−220. doi: 10.1016/j.jpgl.2013.12.020
|
[29] |
梁 斌. 环境煤源硫同位素地球化学约束与黄铁矿热解实验研究[D]. 北京: 中国矿业大学(北京), 2018: 39.
LIANG Bin. Isotopic geochemical constraint of environmental coal-derived sulfur and experimental study on pyrite pyrolysis[D]. Beijing: China University of Mining and Technology-Beijing, 2018: 39.
|
[30] |
于海成. 邢台矿区葛泉矿9#煤中微量元素研究[D]. 邯郸: 河北工程大学, 2011, 54-56.
YU Haicheng. The trace elements in NO. 9 coal seam from Gequan mine, Xingtai coalfield[D]. Handan: Hebei University of Engineering, 2011, 54-56.
|
[31] |
DAI S,WARD C R,FRENCH D,et al. Comments on geochemical characteristics of rare-metal, rare-scattered, and rare-earth elements and minerals in the Late Permian coals from the Moxinpo Mine, Chongqing, China[J]. Energy & Fuels,2018,32(8):8891−8894.
|
[32] |
张玉三,李太任,白向飞. 接触变质煤中碳酸盐矿物成因探讨[J]. 山西矿业学院学报,1995,13(1):7−11.
ZHANG Yusan,LI Tairen,BAI Xiangfei. Genesis of carbonate minerals in contact metamorphic coals[J]. Shanxi Mining in Institute Learned Journal,1995,13(1):7−11.
|
[33] |
郑 雪. 滇东晚二叠世煤中矿物质组成及其对区域地质演化的响应[D]. 北京: 中国矿业大学 (北京), 2018.
ZHENG Xue. Mineral Matter in Lopingian Coals from Eastern Yunnan Province and Its Response to the Regional Geological Evolution[D]. Beijing: China university of Mining and Technology-Beijing, 2018.
|
[34] |
GOLAB A. N, HUTTON A. C, FRENCH D. Petrography, carbonate mineralogy and geochemistry of thermally altered coal in Permian coal measures, Hunter Valley, Australia[J]. International Journal of Coal Geology,2007,70:150−165. doi: 10.1016/j.coal.2006.01.010
|
[35] |
RAHMAN M. W, RIMMER S. M. Effects of rapid thermal alteration on coal: Geochemical and petrographic signatures in the Springfield (No. 5) Coal, Illinois Basin[J]. International Journal of Coal Geology,2014,131:214−226. doi: 10.1016/j.coal.2014.06.020
|
[36] |
于立栋,孙海微,张 静,等. 东天山玉峰金矿热液蚀变作用与元素迁移规律[J]. 岩石学报,2020,36(5):14. doi: 10.18654/1000-0569/2020.05.17
YU Lidong,SUN Haiwei,ZHANG Jing,et al. Hydrothermal alteration and element migration in the Yufeng gold deposit, Eastern Tianshan Orogen[J]. Acta Petrologica Sinica,2020,36(5):14. doi: 10.18654/1000-0569/2020.05.17
|
[37] |
DAI S F, TIAN L, CHOU C L, et al. Mineralogical and compositional characteristics of Late Permian coals from an area of high lung cancer rate in Xuan Wei, Yunnan, China: Occurrence and origin of quartz and chamosite[J]. International Journal of Coal Geology, 2008, 76(4): 318−327.
|
[38] |
夏学惠,闫 飞,刘昌涛,等. 广东官田含铜碲黄铁矿矿床中的硫盐矿物及矿床成因[J]. 岩石矿物学杂志,1996,15(4):355−364.
DAI S, CHOU C L. Occurrence and origin of minerals in a chamosite-bearing coal of Late Permian age, Zhaotong, Yunnan, China[J]. American Mineralogist, 2007, 92(8−9): 1253−1261.
|
[39] |
夏学惠,闫 飞,刘昌涛,等. 广东官田含铜碲黄铁矿矿床中的硫盐矿物及矿床成因[J]. 岩石矿物学杂志,1996,15(4):355−364.
XIA Xuehui,YAN Fei,LIU Changtao,et al. Sulfur minerals and genesis of the Guantian copper bearing pyrite tellurite deposit in Guangdong province[J]. Acta Petrologica et Mineralogica,1996,15(4):355−364.
|
[1] | ZHANG Kekun, BAO Jiusheng, AI Junwei, YUAN Xiaoming, YIN Yan, WANG Maosen, GE Shirong. Autonomous walking path planning of underground handling robot based on improved A* and DWA algorithm[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(11): 197-213. DOI: 10.12438/cst.2024-0747 |
[2] | HUANG Jiade, LIU Yong, DENG Mukun, MEI Wenqing. Research on path planning methods for autonomous dump trucks in open-pit mines[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(8): 182-191. DOI: 10.12438/cst.2023-1593 |
[3] | BAO Jiusheng, LI Yuefeng, ZHOU Heng, YIN Yan, ZHAO Shaodi, WANG Zhongbin, GE Shirong. Synchronization control of multi-cylinder propulsion for autonomous walking of deep underground fluidized coal mining equipments[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(2): 264-278. DOI: 10.12438/cst.2023-1513 |
[4] | GAO Yurong, SUI Gang, ZHANG Xinjun, KONG Jiayuan, ZHANG Hesheng. Application of remote sensing method in coal fire identification in Ningwu Coalfield[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(5): 133-139. DOI: 10.13199/j.cnki.cst.2021-1461 |
[5] | WANG Shibo, GE Shirong, WANG Shijia, LI Zheng, WAN Zhijun. Development and chanllege of unmanned autonomous longwall fully-mechanized coal mining face[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(2): 231-243. |
[6] | QI Qingxin, LI Haitao, ZHENG Weiyu, DU Weisheng, YANG Guanyu, LI Xiaopeng. Physical model and measurement method for elastic deformation energy characterization of coal and rock[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(1): 70-77. |
[7] | BAO Wenliang. Monte Carlo Localization for autonomous auxiliary transport vehicles used in coal mine[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(11): 211-217. |
[8] | LI Hao, JI Yang, ZHANG Xi. Study on autonomic tilting and offsetting technology of hydraulic support in fully-mechanized working face[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (10). |
[9] | XUE Mingxi, CHEN Kaiyuan. Study on seismic identification method of deformed coal based on spectral decomposition[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (3). |
[10] | Yang Jianjian Jiang Hai Ji Xiaodong Wu Miao, . Vibration identification method of coal and rock hardness based on wavelet packet features[J]. COAL SCIENCE AND TECHNOLOGY, 2015, (12). |