Advance Search

CUI Fangpeng,WU Qiang,LI Bin,et al. Dynamic formation mechanism of a karst landslide triggered by mining of multiple-layer & shallow-seated coal seams[J]. Coal Science and Technology,2023,51(2):317−333

. DOI: 10.13199/j.cnki.cst.2022-0002
Citation:

CUI Fangpeng,WU Qiang,LI Bin,et al. Dynamic formation mechanism of a karst landslide triggered by mining of multiple-layer & shallow-seated coal seams[J]. Coal Science and Technology,2023,51(2):317−333

. DOI: 10.13199/j.cnki.cst.2022-0002

Dynamic formation mechanism of a karst landslide triggered by mining of multiple-layer & shallow-seated coal seams

Funds: 

National Natural Science Foundation of China (42272335); National Key Research and Development Program of China (2018YFC1504802)

More Information
  • Received Date: December 31, 2021
  • Available Online: April 20, 2023
  • Catastrophic geo-hazards have occurred frequently in the karst areas of Southwestern China for these years because of internal, external geologic processes and human engineering activities, which makes it urgently necessary to reveal their triggering mechanisms for their consequences controlling. Detailed site geological investigation, full-scale block distinct-element-code modeling and related engineering geological analysis were conducted to recognize main characteristics, controlling factors and dynamic formation mechanism of a so-called underground mining-induced landslide. Results on the Pusa landslide show its dynamic formation is influenced by micro-landform, rock strata types, rock mass structure, weathering, goaf, heavy rainfall and, especially blasting vibration during underground developing and mining, i.e. controlling factor. Based on the numerical modeling, whole subsidence and clock-wise rotation are obvious characteristics of deformation caused by the goaf and the heavy rainfall during pre-failure of the landslide. What’s more, the whole subsidence which was caused by the goaf is one of the key characteristics of the underground mining-induced landslide. After the landslide behaves its critical failure, following dynamic responses include shattering, scraping off part top of the bed, debris flowing and final depositing. Finally, the dynamic formation mechanism is proposed based on evolution of main forces contributing the Pusa landslide. The forces are actuated by the seepage stress, vertical and horizontal blasting stresses, shear stress, unloading stress and dilation stress caused by the caved rock mass.

  • [1]
    YIN Y P,SUN P,ZHU J L,et al. Research on catastrophic rock avalanche at Guanling, Guizhou, China[J]. Landslides,2011,8(4):517−525. doi: 10.1007/s10346-011-0266-8
    [2]
    YIN Y P,SUN P,ZHANG M,et al. Mechanism on apparent dip sliding of oblique inclined bedding rockslide at Jiweishan, Chongqing, China[J]. Landslides,2011,8(1):49−65. doi: 10.1007/s10346-010-0237-5
    [3]
    FAN X M,XU Q,SCARINGI G,et al. The “long” runout rock avalanche in Pusa, China, on August 28, 2017: a preliminary report[J]. Landslides,2019,16(1):139−154. doi: 10.1007/s10346-018-1084-z
    [4]
    殷跃平. 斜倾厚层山体滑坡视向滑动机制研究: 以重庆武隆鸡尾山滑坡为例[J]. 岩石力学与工程学报,2010,29(2):217−226.

    YIN Yueping. Mechanism of apparent dip slide of inclined bedding rockslide—a case study of Jiweishan rockslide in Wulong, Chongqing[J]. Chinese Journal of Rock Mechanics and Engineering,2010,29(2):217−226.
    [5]
    李 滨,殷跃平,高 杨,等. 西南岩溶山区大型崩滑灾害研究的关键问题[J]. 水文地质工程地质,2020,47(4):5−13.

    LI Bin,YIN Yueping,GAO Yang,et al. Critical issues in rock avalanches in the karst mountain areas of southwest China[J]. Hydrogeology & Engineering Geology,2020,47(4):5−13.
    [6]
    杨忠平,蒋源文,李 滨,等. 采动作用下岩溶山体深大裂隙扩展贯通机理研究[J]. 地质力学学报,2020,26(4):459−470.

    YANG Zhongping,JIANG Yuanwen,LI Bin,et al. Study on the mechanism of deep and large fracture propagation and transfixion in karst slope under the action of mining[J]. Journal of Geomechanics,2020,26(4):459−470.
    [7]
    熊 飞, 刘新荣, 冉 乔, 等. 采动-裂隙水耦合下含深大裂隙岩溶山体失稳破坏机理[J]. 煤炭学报. 2021, 46(11): 3445−3458.

    XIONG Fei, LIU Xinrong, RAN Qiao, et al. Instability failure mechanism of karst mountain with deep and large fissures under the mining-fissure water coupling [J]. Journal of China Coal Society. 2021, 46(11): 3445−3458.
    [8]
    崔芳鹏,李 滨,杨忠平,等. 贵州纳雍普洒滑坡动力触发机制离散元模拟分析[J]. 中国岩溶,2020,39(4):524−534.

    CUI Fangpeng,LI Bin,YANG Zhongping,et al. Discrete element modelling on dynamic triggering mechanism of the Pusa landslide in Nayong county, Guizhou Province[J]. Carsologica Sinica,2020,39(4):524−534.
    [9]
    刘新荣,许 彬,刘永权,等. 频发微小地震下顺层岩质边坡累积损伤及稳定性分析[J]. 岩土工程学报,2020,42(4):632−641.

    LIU Xinrong,XU Bin,LIU Yongquan,et al. Cumulative damage and stability analysis of bedding rock slope under frequent microseisms[J]. Chinese Journal of Geotechnical Engineering,2020,42(4):632−641.
    [10]
    李 军,褚宏亮,李 滨,等. 西南煤系地层山区采动型崩滑灾害研究关键问题[J]. 中国岩溶,2020,39(4):453−466.

    LI Jun,CHU Hongliang,LI Bin,et al. Key scientific issues in research on landslide hazard induced by underground mining in mountainous areas with coal-bearing strata of southwestern China[J]. Carsologica Sinica,2020,39(4):453−466.
    [11]
    LI B,FENG Z,WANG G Z,et al. Processes and behaviors of block topple avalanches resulting from carbonate slope failures due to underground mining[J]. Environmental Earth Sciences,2016,75(8):694. doi: 10.1007/s12665-016-5529-1
    [12]
    李 滨, 冯 振, 张 勤, 等. 岩溶山区特大崩滑灾害成灾模式与早期识别研究[M]. 北京: 科学出版社, 2016.

    LI Bin, FENG Zhen, ZHANG Qin, et al. Study on the formation pattern and early identification of mega landslides in karst mountains [M]. Beijing: Science Press, 2016.
    [13]
    李腾飞,陈洪涛,王瑞青. 湖北宜昌盐池河滑坡成因机理分析[J]. 工程地质学报,2016,24(4):578−583.

    LI Tengfei,CHEN Hongtao,WANG Ruiqing. Formation mechanism of Yanchihe landslide in Yichang city, Hubei Province[J]. Journal of Engineering Geology,2016,24(4):578−583.
    [14]
    殷跃平,刘传正,陈红旗,等. 2013年1月11日云南镇雄赵家沟特大滑坡灾害研究[J]. 工程地质学报,2013,21(1):6−15.

    YIN Yueping,LIU Chuanzheng,CHEN Hongqi,et al. Investigation on catastrophic landslide of January 11, 2013 at Zhaojiagou, Zhenxiong county, Yunnan Province[J]. Journal of Engineering Geology,2013,21(1):6−15.
    [15]
    殷跃平,朱继良,杨胜元. 贵州关岭大寨高速远程滑坡—碎屑流研究[J]. 工程地质学报,2010,18(4):445−454.

    YIN Yueping,ZHU Jiliang,YANG Shengyuan. Investigation of a high speed and long run-out rockslide-debris flow at Dazhai in Guanling of Guizhou Province[J]. Journal of Engineering Geology,2010,18(4):445−454.
    [16]
    黄润秋. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报,2007,26(3):433−454.

    HUANG Runqiu. Large-scale landslides and their sliding mechanisms in China since the 20th century[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(3):433−454.
    [17]
    唐 川. 昭通头寨沟特大型灾害性滑坡研究[J]. 云南地理环境研究,1991,3(2):64−71.

    TANG Chuan. A study on large-scale catastrophic landslide at Touzhai gully of Zhaotong[J]. Yunnan Geographic Environment Research,1991,3(2):64−71.
    [18]
    郑 光,许 强,刘秀伟,等. 2019年7月23日贵州水城县鸡场镇滑坡-碎屑流特征与成因机理研究[J]. 工程地质学报,2020,28(3):541−556.

    ZHENG Guang,XU Qiang,LIU Xiuwei,et al. The Jichang landslide on July 23, 2019 in Shuicheng, Guizhou: characteristics and failure mechanism[J]. Journal of Engineering Geology,2020,28(3):541−556.
    [19]
    殷坤龙,姜清辉,汪 洋. 新滩滑坡运动全过程的非连续变形分析与仿真模拟[J]. 岩石力学与工程学报,2002,21(7):959−962.

    YIN Kunlong,JIANG Qinghui,WANG Yang. Numerical simulation on the movement process of Xintan landslide by DDA method[J]. Chinese Journal of Rock Mechanics and Engineering,2002,21(7):959−962.
    [20]
    周迎庆,雷明堂,徐金台. 四川巫溪南门湾崩滑的形成机制探讨[J]. 成都地质学院学报,1989,16(1):102−107.

    ZHOU Yingqing,LEI Mingtang,XU Jintai. The formation mechanism of Nanmenwan toppling-slide in Wuxi county, Sichuan[J]. Journal of Chengdu College of Geology,1989,16(1):102−107.
    [21]
    满作武. 四川巫溪中阳村滑坡发生机制分析[J]. 地质灾害与防治,1991,2(1):73−79.

    MAN Zuowu. Analysis of the mechanism of landslide taken place in Zhongyang village, Wuxi district, Sichuan Province[J]. Journal of Geological Hazard and Control,1991,2(1):73−79.
    [22]
    姜 云,尹金平. 华蓥山溪口滑坡—碎屑流[J]. 地质灾害与环境保护,1992,3(2):51−58.

    JIANG Yun,YIN Jinping. Rock avalanche of Xikou in Huayinshan[J]. Geological Hazards and Environment Preservation,1992,3(2):51−58.
    [23]
    王国章,李 滨,冯 振,等. 重庆武隆鸡冠岭岩质崩滑-碎屑流过程模拟[J]. 水文地质工程地质,2014,41(5):101−106.

    WANG Guozhang,LI Bin,FENG Zhen,et al. Simulation of the process of the Jiguanling rock avalanche in Wulong of Chongqing[J]. Hydrogeology & Engineering Geology,2014,41(5):101−106.
    [24]
    金德山. 云南元阳老金山滑坡[J]. 中国地质灾害与防治学报,1998,9(4):81,99−102.

    JIN Deshan. Laojinshan landslide in Yuanyang county, Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control,1998,9(4):81,99−102.
    [25]
    JONES D B, SIDDLE H J, REDDISH D J, et al. Landslides and undermining: slope stability interaction with mining subsidence behavior [C]//Proceedings of the 7th International Society of Rock Mechanics Congress. Aachen: Rotterdam, 1991: 893−898.
    [26]
    DONNELLY L J, CRUZ H D L, Asmar I, et al. The monitoring and prediction of mining subsidence in the Amaga, Angelopolis, Venecia and Bolombolo Regions, Antioquia, Colombia. Engineering Geology [J]. 2001, 59(1/2): 103−114.
    [27]
    ZAHIRI H,PALAMARA D R,FLENTJE P,et al. A GIS-based weights-of-evidence model for mapping cliff instabilities associated with mine subsidence[J]. Environmental Geology,2006,51(3):377−386. doi: 10.1007/s00254-006-0333-y
    [28]
    ERGİNAL A E,TÜRKEŞ M,ERTEK T A,et al. Geomorphological investigation of the excavation‐induced dündar landslide, bursa-turkey[J]. Geografiska Annaler:Series A, Physical Geography,2008,90(2):109−123. doi: 10.1111/j.1468-0459.2008.00159.x
    [29]
    SINGH R,MANDAL P K,SINGH A K,et al. Upshot of strata movement during underground mining of a thick coal seam below hilly terrain[J]. International Journal of Rock Mechanics and Mining Sciences,2008,45(1):29−46. doi: 10.1016/j.ijrmms.2007.03.006
    [30]
    FUENKAJORN K,ARCHEEPLOHA S. Prediction of cavern configurations from subsidence data[J]. Engineering Geology,2010,110(1/2):21−29. doi: 10.1016/j.enggeo.2009.10.003
    [31]
    MARSCHALKO M,YILMAZ I,BEDNÁRIK M,et al. Influence of underground mining activities on the slope deformation genesis: Doubrava Vrchovec, Doubrava Ujala and Staric case studies from Czech Republic[J]. Engineering Geology,2012,147/148:37−51. doi: 10.1016/j.enggeo.2012.07.014
    [32]
    YILMAZ I,MARSCHALKO M. A leaning historical monument formed by underground mining effect: an example from Czech Republic[J]. Engineering Geology,2012,133/134:43−48. doi: 10.1016/j.enggeo.2012.02.011
    [33]
    UNLU T,Akcin H,YILMAZ O. An integrated approach for the prediction of subsidence for coal mining basins[J]. Engineering Geology,2013,166:186−203. doi: 10.1016/j.enggeo.2013.07.014
    [34]
    LANA S M. Numerical modeling of failure mechanisms in phyllite mine slopes in Brazil[J]. International Journal of Mining Science and Technology,2014,24(6):777−782. doi: 10.1016/j.ijmst.2014.10.007
    [35]
    SALMI E F,NAZEM M,KARAKUS M. The effect of rock mass gradual deterioration on the mechanism of post-mining subsidence over shallow abandoned coal mines[J]. International Journal of Rock Mechanics and Mining Sciences,2017,91:59−71. doi: 10.1016/j.ijrmms.2016.11.012
    [36]
    FENG Z,LI B,YIN Y P,et al. Rockslides on limestone cliffs with sub horizontal bedding in the southwestern calcareous area of China[J]. Natural Hazards and Earth System Sciences,2014,14(9):2627−2635. doi: 10.5194/nhess-14-2627-2014
    [37]
    CHEN L Q,ZHAO C Y,LI B,et al. Deformation monitoring and failure mode research of mining-induced Jianshanying landslide in karst mountain area, China with ALOS/PALSAR-2 images[J]. Landslides,2021,18(8):2739−2750. doi: 10.1007/s10346-021-01678-6
    [38]
    SALMI E F,NAZEM M,KARAKUS M. Numerical analysis of a large landslide induced by coal mining subsidence[J]. Engineering Geology,2017,217:141−152. doi: 10.1016/j.enggeo.2016.12.021
    [39]
    ZHAO J J,XIAO J G,LEE M L,et al. Discrete element modeling of a mining-induced rock slide[J]. SpringerPlus,2016,5(1):1633. doi: 10.1186/s40064-016-3305-z
    [40]
    ZHAO J J, WAN X, SHI Y B, et al. Deformation behavior of mining beneath flat and sloping terrains in mountainous areas [J]. Geofluids, 2021.https://doi.org/10.1155/2021/6689966.
    [41]
    FANGPENG CUI,BIN LI,CHEN Xiong,et al. Dynamic triggering mechanism of the Pusa mining-induced landslide in Nayong County, Guizhou Province, China[J]. Geomatics, Natural Hazards and Risk,2022,13(1):123−147. doi: 10.1080/19475705.2021.2017020
    [42]
    李智毅, 杨裕云. 工程地质学概论[M]. 武汉: 中国地质大学出版社, 1994.

    LI Zhiyi, YANG Yuyun. Introduction to engineering geology [M]. Wuhan: China University of Geosciences Press, 1994.
    [43]
    钱鸣高, 石平五, 许家林. 矿山压力与岩层控制[M]. 徐州: 中国矿业大学出版社, 2010.

    QIAN Minggao, SHI Pingwu, XU Jialin. Mining pressure and strata control [M]. Xuzhou: China University of Mining and Technology Press, 2010.
    [44]
    康永华,黄福昌,席京德. 综采重复开采的覆岩破坏规律[J]. 煤炭科学技术,2001,29(1):22−24. doi: 10.3969/j.issn.0253-2336.2001.01.009

    KANG Yonghua,HUANG Fuchang,XI Jingde. Overburden failure law of fully mechanized repeated mining[J]. Coal Science and Technology,2001,29(1):22−24. doi: 10.3969/j.issn.0253-2336.2001.01.009
  • Cited by

    Periodical cited type(12)

    1. 刘忠海. 煤化工中的焦化废水污染控制原理与技术研究. 中国石油和化工标准与质量. 2025(04): 138-140 .
    2. 李泽乙,廖常盛,柴云,王庆宏,詹亚力,陈春茂,陈发源. 焦化废水生化尾水特征及其深度处理技术进展. 工业水处理. 2024(03): 10-23 .
    3. 余梦春. 焦化废水工艺流程及深度处理工艺优化分析. 山西化工. 2024(05): 224-226 .
    4. 吴震,陈飞勇,刘汝鹏,卢永峰,孙翠珍,罗从伟. 磁介质混凝沉淀技术的现状及探索. 净水技术. 2023(02): 23-38 .
    5. 郭娟,米玉辉,陈佳琪,武励鹏,陈旭东. 焦化工业园区中水深度处理及零排放实践. 当代化工研究. 2023(04): 77-79 .
    6. 李竞赢,刘启蒙,杨明慧. 矿井水水化学特征及资源化利用研究——以张集煤矿为例. 煤炭科学技术. 2023(04): 254-263 . 本站查看
    7. 唐海龙,樊玉萍,马晓敏,董宪姝,常明. 基于撞击流调控的煤泥水混合过程强化研究. 煤炭科学技术. 2023(10): 323-335 . 本站查看
    8. 章丽萍,姚瑞涵,赵晓曦,崔行健,段梦楠,王丽芳,陈加乐,马泽钰. CaCl_2+除氟药剂两段法处理焦化浓盐水中氟化物研究. 煤炭科学技术. 2023(11): 255-263 . 本站查看
    9. 张志超,牛涛,于豹,石伟. 焦化废水处理工程实例分析. 工业水处理. 2022(07): 179-185 .
    10. 张国凯,王艺霏,李亚男,冯卓,武亚宁,杨昊,宋子恒. Fe(Ⅵ)/H_2O_2体系对焦化废水中有机物和煤颗粒物的协同处理研究. 煤炭科学技术. 2022(07): 277-283 . 本站查看
    11. 郑剑平,刘凯林,薛继峰,李高辉,张立峰,涂亚楠. 吡啶对褐煤水煤浆流变性的影响规律研究. 煤炭科学技术. 2022(08): 270-276 . 本站查看
    12. 刘文礼,耿鹏岳,卓启明,马金虎,李佳. 脱硫废水固化体力学特性研究. 煤炭科学技术. 2022(11): 230-235 . 本站查看

    Other cited types(3)

Catalog

    Article views (85) PDF downloads (28) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return