Advance Search
Volume 49 Issue 4
Apr.  2021
Turn off MathJax
Article Contents
Key technology and application of intelligent perception and intelligent control in fully mechanized mining face[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(4): 28-39. DOI: 10.13199/j.cnki.cst.2021.04.004
Citation: Key technology and application of intelligent perception and intelligent control in fully mechanized mining face[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(4): 28-39. DOI: 10.13199/j.cnki.cst.2021.04.004

Key technology and application of intelligent perception and intelligent control in fully mechanized mining face

More Information
  • Available Online: April 02, 2023
  • Published Date: April 24, 2021
  • During the“13th Five-Year Plan”period, China’s coal mining began to enter an intelligent mode, but it was still in the initial stage of intelligent mining. Firstly, the development of intelligent mining technology at home and abroad was analyzed, with emphasis on the construction of intelligent coal mine in Australia and the technological progress of unmanned long-wall face in Beijing Tiandi-Marco Electro Hydraulic Control System Co., Ltd., Secondly, the top-level design of domestic intelligent mining industry was summarized in terms of intelligent perception and intelligent control. For the key technologies of intelligent perception, the intelligent sensing technology system was established, which overcame the comprehensive sensing technology of fully mechanized mining equipment and the automatic straight-finding technology of working face, and solved the problem of increased cumulative error of long-term coordinate drift of inertial navigation. The Internet of Things has promoted the transparent sensing technology of surrounding rocks, coal-rock interface identification based on multi-information fusion and UWB radar fine measurement, which has a certain advanced detection ability and the ability to adapt to changes in geological conditions of coal seams, and the dynamics of high-precision three-dimensional dynamic geological models correction technology. The robot technology was introduced into the perception system of the fully mechanized working face, and the quick and seamless real-time perception of the production of the fully mechanized working face was realized by the patrol robot. By upgrading the traditional VR modeling technology, a 3D real-world model of the working face was established. For the key technologies of intelligent control, an intelligent control technology system was established, and remote supervisory control technology and autonomous control technology were studied, and the automatic detection of coal-rock interface and real-time recognition of the cutting status of the drum by the use of inspection robots have realized intelligent height adjustment control, pitch mining control and smooth stepped multi-level adjustment control of the propulsion direction in order to develop intelligent coal cutting technology under the mode of inspection robot; Through the protocol improvement of 5G communication system, the performance of video transmission with uplink bandwidth exceeding 300 Mbps and transmission delay less than 20 ms was achieved. The real-time and reliability of remote control in fully mechanized mining were ensured. Through the application of key technologies of intelligent perception and intelligent control, the application practices of remote intervention intelligent control of fully mechanized mining production, visual measurement of coal and rock boundary, automatic measurement and straightening of straightness, UWB radar detection, three-dimensional modeling of fully mechanized mining face in real scene and autonomous coal mining by patrol inspection robot have been carried out. Finally, the unresolved theoretical and key technical problems were put forward, such as the theoretical system of advanced and accurate detection of depth, the theoretical system of unmanned control in the whole process of fully mechanized mining, the communication positioning system of seamless coverage in the whole mine, the target identification in complex environment, the control of up-leaping and down-sliding, and the advanced automatic support shifting technology.
  • Cited by

    Periodical cited type(53)

    1. 李博,侍守伊,张建军,夏蕊,王学文,崔卫秀,倪强. 基于CUDA加速动态规划优化全景拼接的刮板输送机直线状态监测. 工矿自动化. 2025(01): 45-51+60 .
    2. 云俊文,赵仁亮. 基于灵敏度分析的矿用卸荷阀性能优化研究. 机床与液压. 2025(03): 191-198 .
    3. 关士远. 综采工作面隔爆巡检机器人设计及工程实践. 煤炭科学技术. 2025(02): 363-373 . 本站查看
    4. 张斌. 基于5G的智能化综采工作面建设研究. 凿岩机械气动工具. 2025(05): 207-209 .
    5. 姚钰鹏,张境麟,熊武. 基于LSTM的液压支架尾梁倾角预测方法. 煤炭科学技术. 2025(05): 362-371 . 本站查看
    6. 孙亮. 井下综采设备高精度激光定位技术的应用与研究. 自动化应用. 2024(03): 146-148 .
    7. 鞠哲. 综采工作面三维防爆巡检机器人设计及试验. 煤矿机械. 2024(04): 8-10 .
    8. 孙亮. 井下煤矿综采智能协同关键技术研究. 自动化应用. 2024(07): 46-47+51 .
    9. 郭臣. 矿井综采工作面智能化建设探索与研究. 能源与节能. 2024(05): 40-42 .
    10. 魏文艳,吴桐. 综采工作面智能感知技术的发展应用与前景综述. 煤炭工程. 2024(05): 160-165 .
    11. 温双武. 采场矿压数据在采煤智能决策优化中的应用. 能源与环保. 2024(05): 282-286 .
    12. 汪卫兵,侯学谦,赵栓峰,贺海涛,邢志中,路正雄. 基于残差优化的综采工作面煤壁点云补全方法. 工矿自动化. 2024(06): 120-128 .
    13. 张骁亚. 煤矿综采面无人值守监测技术. 江西煤炭科技. 2024(03): 264-266+269 .
    14. 马伟佳,范玫杉,徐冠宇. 煤矿机器人研究进展、关键技术及发展趋势. 机器人技术与应用. 2024(04): 3-10 .
    15. 于斌,邰阳,徐刚,李勇,李东印,王世博,匡铁军,孟二存. 千万吨级综放工作面智能化放煤理论及关键技术. 煤炭科学技术. 2024(09): 48-67 . 本站查看
    16. 高杬,霍金刚,吴博. 薄煤层高精度透明地质模型构建与应用. 陕西煤炭. 2024(11): 139-142+165 .
    17. 张飞超. 基于大数据优化的煤矿智能感知应用技术. 煤矿机械. 2024(11): 184-189 .
    18. 郑伟卫. 智能化综采工作面装备选型及关键技术的研究应用. 山东煤炭科技. 2024(10): 101-105 .
    19. 王飞,刘孝军,蔡东,赵格兰,贺海波. 智能化矿山大数据研究现状. 煤矿机械. 2024(12): 200-202 .
    20. 常树峰. 基于图像识别技术的综放工作面安全智能监控方法. 矿业装备. 2024(10): 7-9 .
    21. 高汉昆,孔红. 基于PLC技术的刮板输送机直线度控制方法. 煤炭技术. 2023(02): 203-205 .
    22. 索永录. 智能综采机组控制目标及采煤机割煤高度控制方法. 西安科技大学学报. 2023(01): 9-17 .
    23. 葛世荣,胡而已,李允旺. 煤矿机器人技术新进展及新方向. 煤炭学报. 2023(01): 54-73 .
    24. 王国法,杜毅博,徐亚军,任怀伟,张德生,庞义辉. 中国煤炭开采技术及装备50年发展与创新实践——纪念《煤炭科学技术》创刊50周年. 煤炭科学技术. 2023(01): 1-18 . 本站查看
    25. 李重重,刘清,刘军锋,冯银辉. 面向综采工作面的自动化软件设计与应用. 工矿自动化. 2023(03): 124-130 .
    26. 黎青. 采煤机自主截割系统架构及关键技术研究. 煤炭技术. 2023(04): 187-190 .
    27. 刘晓宾. 基于远程操作的无人采煤机器人研制. 煤矿机械. 2023(05): 55-57 .
    28. 杨军,张超,杨恢凡,郭一楠. 煤炭工业互联网技术研究综述. 工矿自动化. 2023(04): 23-32 .
    29. 王宏伟,杨焜,付翔,李进,贾思锋. 综采工作面海量数据挖掘分析平台设计. 工矿自动化. 2023(05): 30-36+126 .
    30. 任伟. 基于SLAM和虚拟现实的综采工作面巡检系统. 工矿自动化. 2023(05): 59-65 .
    31. 陈伟,胡而已. 基于微服务架构的大型智能矿山建设研究与设计. 中国煤炭. 2023(05): 94-101 .
    32. 韩冬阳,沈雪,郭捷楠. 面向建材行业的智能工厂参考模型研究与应用实践. 新型工业化. 2023(06): 40-49 .
    33. 孟令宇,周如林,郭资鉴. 液压缸精准推移试验系统设计研究. 煤炭科学技术. 2023(06): 237-245 . 本站查看
    34. 杨静宜,赵莉娅,梁月肖. 基于机器视觉的矿用巡检机器人环境感知研究. 煤炭技术. 2023(09): 227-229 .
    35. 程健,李昊,马昆,刘斌,孙大智,马永壮,殷罡,王广福,李和平. 矿井视觉计算体系架构与关键技术. 煤炭科学技术. 2023(09): 202-218 . 本站查看
    36. 庞义辉,刘新华,王泓博,姜志刚,关书方,张自发,王伟. 基于千斤顶行程驱动的液压支架支护姿态与高度解析方法. 采矿与安全工程学报. 2023(06): 1231-1242 .
    37. 李国栋. 智能化综采工作面建设和应用实践分析. 矿业装备. 2023(12): 58-59 .
    38. 张平松,李洁,李圣林,郭立全. 三维地质建模在煤矿地质可视化中的应用分析. 科学技术与工程. 2022(05): 1725-1740 .
    39. 石文利,杨龙. 综放工作面顶煤动态监测及控制技术研究. 煤矿机械. 2022(05): 46-48 .
    40. 姜玉峰,张立亚,李标,张子良. 激光雷达在煤矿智能化中的应用. 煤矿机械. 2022(05): 123-125 .
    41. 宋焘,董博,党恩辉. 基于智能感知的综采三机远程智能协同控制技术. 煤矿机械. 2022(06): 172-175 .
    42. 向家雨,黄莹,张定堂,杨文明,杨元凯. CT200-2.6智能成套一体化综采机组的选型与应用. 矿山机械. 2022(06): 6-11 .
    43. 张建中,郭军. 智慧矿山工业互联网技术架构探讨. 煤炭科学技术. 2022(05): 238-246 . 本站查看
    44. 冯银辉,崔耀,王旭峰,秦泽宇,王志强,毛自新. 大采高综采工作面设备智能控制系统研究. 煤炭科学技术. 2022(09): 192-199 . 本站查看
    45. 亓玉浩,关士远. 基于激光SLAM的综采工作面实时三维建图方法. 工矿自动化. 2022(11): 139-144 .
    46. 宋单阳,卢春贵,陶心雅,杨金衡,王培恩,郑文强,宋建成. 基于最大熵卡尔曼滤波算法的液压支架调直方法. 工矿自动化. 2022(11): 119-124 .
    47. 张辰宇. 基于5G通信技术的矿井开采工作面环境监测系统. 能源与环保. 2022(11): 220-225 .
    48. 张德生,谭震,朱信龙,加保瑞,黄彦德,路兴军. 分布式供液模式下液压支架快速推移控制技术研究. 矿山机械. 2022(12): 1-6 .
    49. 孙海涛,舒龙勇,姜在炳,胡健. 煤矿区煤层气与煤炭协调开发机制模式及发展趋势. 煤炭科学技术. 2022(12): 1-13 . 本站查看
    50. 魏文艳. 综采工作面智能化开采技术发展现状及展望. 煤炭科学技术. 2022(S2): 244-253 . 本站查看
    51. 张平松,李圣林,邱实,郭立全,胡雄武. 巷道快速智能掘进超前探测技术与发展. 煤炭学报. 2021(07): 2158-2173 .
    52. 李晓刚. 中厚煤层综采工作面三机智能化控制系统研究. 机械管理开发. 2021(11): 173-174 .
    53. 许日杰,杨科,吴劲松,阚磊. 麻地梁煤矿智能化开采研究. 工矿自动化. 2021(11): 9-15 .

    Other cited types(15)

Catalog

    Article views (660) PDF downloads (2809) Cited by(68)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return