Advance Search
Volume 49 Issue 1
Jan.  2021
Turn off MathJax
Article Contents
XU Jiang, LI Qixian, PENG Shoujian, YAN Fazhi, ZHANG Chaolin, HAN Ende. Study on physical simulation test method of coalbed methane production in superimposed gas-bearing system[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(1): 225-233. DOI: 10.13199/j.cnki.cst.2021.01.018
Citation: XU Jiang, LI Qixian, PENG Shoujian, YAN Fazhi, ZHANG Chaolin, HAN Ende. Study on physical simulation test method of coalbed methane production in superimposed gas-bearing system[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(1): 225-233. DOI: 10.13199/j.cnki.cst.2021.01.018

Study on physical simulation test method of coalbed methane production in superimposed gas-bearing system

More Information
  • Available Online: April 02, 2023
  • Published Date: January 24, 2021
  • In order to study the spatio-temporal dynamic evolution characteristics of reservoir parameters and productionduring the coalbed methane (CBM)production of multi-superimposed gas system in the eastern Yunnan and western Guizhou area, the CBM production system has been reformed and upgraded for the special CBM reservoir-forming characteristics and existing testing equipments. The components of the coal-bed methane mining system consists of drainage pipes, gas-water separators, production pipelines, and other accessories. A set of physical simulation test methods for CBM production was establishedfor the selection of aggregate materials,specimen preparation and coalbed methane mining. Finally, the advantages of the test system and method, the future improvement directions and the applicable conditions were summarized.In order to verify the effect of physical simulation test method, a vertical well was used as an example to carry out a coal-bed methane mining experiment with a superimposed gas-bearing system, and the dynamic evolution law of gas pressure, coal seam temperature, coal seam deformation, production and other parameters in the process of coalbed methane mining in 4 coal seams was studied.The experimental resultsshow thatthe gas pressure is approximately elliptical with the wellbore as the center. The closer to the wellhole,the lower the gas pressure, and vice versa. The gas migration speed gradually decreases from near well section to far well section.The temperature decreases from the central axis of the wellbore to the boundary. The closer to the wellbore, the greater the temperature drop, and vice versaThe final volumetric strains of coal seams 1 to 4 at 360 min is 0.067%, 0.109%, 0.117% and 0.154% respectively, and the larger the initial gas pressure of the coal seam, the larger the final deformation. The lower the initial reservoir pressure is, the earlier the volumetric strain growth rate slows down.The instantaneous production curves show a single peak curve type which quickly reaches the peak and drops sharply in the early stage.The research results verify the reliability of the physical simulation test method for superimposed gas-bearing coalbed methane mining, and can provide a reference for on-site coalbed methane mining.
  • Cited by

    Periodical cited type(9)

    1. 苗常盛,李雪交,杨俊辉,张继达,张文喆. 煤矿巷道中分岔管道瓦斯爆炸特性研究. 火工品. 2025(03): 108-112 .
    2. 丁文学,叶青,贾真真,王维建. H型隧道双爆源气体爆炸传播特性模拟研究. 中国安全生产科学技术. 2024(04): 122-128 .
    3. 王涛,董哲,盛禹淮,南凡,杨哲,杨鹏,孟帆,罗振敏. 卤代烷气体灭火剂促进-抑制瓦斯燃爆特性试验. 煤炭科学技术. 2024(04): 265-274 . 本站查看
    4. 司荣军,牛宜辉,王磊,黄子超,贾泉升. 煤矿瓦斯煤尘爆炸的动力学特性研究进展. 工程爆破. 2023(01): 30-39 .
    5. 李敏,林志军,鲁义,施式亮,王德明,王丹. 基于模糊贝叶斯网络的煤矿瓦斯爆炸风险评估. 煤炭学报. 2023(S2): 626-637 .
    6. 宋双林. 自吸式泡沫发生器发泡机理及其优化设计. 煤炭科学技术. 2022(06): 239-244 . 本站查看
    7. 镐振,孙光中. 特厚煤层回采巷道塑性区形态特征及演化规律研究. 煤炭科学技术. 2022(06): 77-83 . 本站查看
    8. 高智慧,李雨成,张欢,赵涛,李俊桥. 瓦斯爆炸在角联通风管网中的传播特性研究. 中国安全生产科学技术. 2022(08): 72-78 .
    9. 贾进章,田秀媛,赵丹,王枫潇. 角联管网瓦斯爆炸冲击波与火焰波的传播特性. 爆破器材. 2022(05): 24-30 .

    Other cited types(3)

Catalog

    Article views (252) PDF downloads (804) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return