GAO Yurong,SUI Gang,ZHANG Xinjun,et al. Application of remote sensing method in coal fire identification in Ningwu Coalfield[J]. Coal Science and Technology,2023,51(5):133−139
. DOI: 10.13199/j.cnki.cst.2021-1461Citation: |
GAO Yurong,SUI Gang,ZHANG Xinjun,et al. Application of remote sensing method in coal fire identification in Ningwu Coalfield[J]. Coal Science and Technology,2023,51(5):133−139 . DOI: 10.13199/j.cnki.cst.2021-1461 |
Coal fire cause serious influence on environment, economy and safety of surrounding area. It is of great significance to accurately identify the scope of coal fire caused by spontaneous combustion in coal field for monitoring and controlling coal fire. Relevant scholars identified the scope of coal fire by extracting surface thermal anomaly or surface deformation information respectively, but due to the single method and means, there are many factors causing the occurrence of coal fire, so the experimental results are not accurate enough. In order to improve the accuracy of coal fire identification, the coal fire identification method combining satellite thermal infrared technology and radar technology is applied to the fire area identification of Ningwu Coalfield in Shanxi Province through practical application research. Firstly, the ASTER–TES(Temperature-Emissivity Separation) algorithm is used to retrieve land surface Temperature from ASTER thermal infrared data at night. At the same time, surface subsidence information is inverted using The Sentinel-1 data of SBAS–InSAR(Small Baseline Subset InSAR) technology, and then the abnormal high temperature area and abnormal settlement area in the study area are extracted by threshold segmentation method, and then the range of suspected coal field fire area is obtained by fusion processing. Finally, the experimental results are compared and verified by the coal fire range determined by the field survey method of measuring radon. The results show that the accuracy of the proposed method is as high as 93.78%, which is 43.29% and 62.23% higher than that of the single temperature inversion method and the settlement anomaly method. However, some fire zones have not been identified, mainly because it is difficult to obtain the threshold of identifying fire zones using surface deformation. The results show that the cooperative identification method of thermal infrared technology and radar technology can effectively overcome the deficiency of single identification method, significantly improve the identification accuracy of coal fire range, and provide a powerful reference for accurately determining the control range of fire area. In order to obtain more comprehensive and accurate range of coal fire, it is necessary to study the characteristics of surface deformation detection method in the future.
[1] |
王晓蕾,姬志岗,魏 慷,等. 煤层开采地表沉陷监测及预测技术现状及发展趋势[J]. 科学技术与工程,2020,20(24):9696−9706. doi: 10.3969/j.issn.1671-1815.2020.24.003
WANG Xiaolei,JI Zhigang,WEI Kang,et al. Present situation and development trend of surface subisidence monitoring and prediction technology in coal seam mining[J]. Science Technology and Engineering,2020,20(24):9696−9706. doi: 10.3969/j.issn.1671-1815.2020.24.003
|
[2] |
张 丹,武伟伟. 尾矿库安全管理信息化建设重要性探讨[J]. 矿业研究与开发,2021,41(3):117−120. doi: 10.13827/j.cnki.kyyk.2021.03.024
ZHANG Dan,WU Weiwei. Discussion on importance of information construction of safety management of tailings pond[J]. Mining Research and Development,2021,41(3):117−120. doi: 10.13827/j.cnki.kyyk.2021.03.024
|
[3] |
刘竞龙,汪云甲,闫世勇,等. 乌鲁木齐东侧煤火多源遥感融合探测[J]. 煤矿安全,2019,50(8):158−161. doi: 10.13347/j.cnki.mkaq.2019.08.039
LIU Jinglong,WANG Yunjia,YAN Shiyong,et al. Multi-source remote sensing fusion detection of coal fire in eastern urumchi[J]. Safety in Coal Mines,2019,50(8):158−161. doi: 10.13347/j.cnki.mkaq.2019.08.039
|
[4] |
许 怡,范洪冬,党立波. 基于TIRS和TCP–InSAR的新疆广域煤田火区探测方法[J]. 金属矿山,2019(10):164−171.
XU Yi,FAN Hongdong,DANG Libo. Detection method of fire area in Xinjiang wide area coalfield based on TIRS and TCP–InSAR[J]. Metal Mine,2019(10):164−171.
|
[5] |
邓 军,李 贝,王 凯,等. 我国煤火灾害防治技术研究现状及展望[J]. 煤炭科学技术,2016,44(10):1−7,101. doi: 10.13199/j.cnki.cst.2016.10.001
DENG Jun,LI Bei,WANG Kai,et al. Research status and outlook on prevention and control technology of coal fire disaster in China[J]. Coal Science and Technology,2016,44(10):1−7,101. doi: 10.13199/j.cnki.cst.2016.10.001
|
[6] |
李召良,段四波,唐伯惠,等. 热红外地表温度遥感反演方法研究进展[J]. 遥感学报,2016,20(5):899−920.
LI Zhaoliang,DUAN Sibo,TANG Bohui,et al. Review of methods for land surface temperature derived from thermal infrared remotely sensed data[J]. Journal of Remote Sensing,2016,20(5):899−920.
|
[7] |
邱程锦,王 坚,刘立聪,等. 遥感技术在乌达煤田火灾监测中的应用[J]. 煤炭工程,2012,44(8):130−133. doi: 10.3969/j.issn.1671-0959.2012.08.047
QIU Jincheng,WANG Jian,LIU Licong,et al. Remote sensing technology applied to fire disaster monitoring and measuring of Wuda coalfield[J]. Coal Engineering,2012,44(8):130−133. doi: 10.3969/j.issn.1671-0959.2012.08.047
|
[8] |
李 峰,梁汉东,赵小平,等. 基于ASTER影像的乌达火区遥感监测研究[J]. 煤矿安全,2016,47(11):15−18. doi: 10.13347/j.cnki.mkaq.2016.11.005
LI Feng,LIANG Handong,ZHAO Xiaoping,et al. Remote sensing monitoring research on coal fire in Wuda mine by ASTER images[J]. Safety in Coal Mines,2016,47(11):15−18. doi: 10.13347/j.cnki.mkaq.2016.11.005
|
[9] |
刘振岭,郑忠亚. 采空区煤体自燃温度场演变模拟试验研究[J]. 煤炭科学技术,2020,48(8):114−120. doi: 10.13199/j.cnki.cst.2020.08.014
LIU Zhenling,ZHENG Zhongya. Simulation test study on temperature field evolution of coal spontaneous combustion in gob[J]. Coal Science and Technology,2020,48(8):114−120. doi: 10.13199/j.cnki.cst.2020.08.014
|
[10] |
JIANG Liming,LIN Hui,MA Jianwei,et al. Potential of small-baseline SAR interferometry for monitoring land subsidence related to underground coal fires: Wuda(Northern China) case study[J]. Remote Sensing of Environment,2010,115(2):257−268.
|
[11] |
RIYAS Moidu Jameela,SYED Tajdarul Hassan,KUMAR Hrishikesh,et al. Detecting and analyzing the evolution of subsidence due to coal fires in Jharia coalfield, India using sentinel-1 SAR data[J]. Remote Sensing,2021,13(8):1521. doi: 10.3390/rs13081521
|
[12] |
张 凯,李全生,戴华阳,等. 矿区地表移动“空天地”一体化监测技术研究[J]. 煤炭科学技术,2020,48(2):207−213. doi: 10.13199/j.cnki.cst.2020.02.027
ZHANG Kai,LI Quansheng,DAI Huayang,et al. Research on integrated monitoring technology and practice of “space-sky-ground”on surface movement in mining area[J]. Coal Science and Technology,2020,48(2):207−213. doi: 10.13199/j.cnki.cst.2020.02.027
|
[13] |
YAN Shiyong,SHI Ke,LI Yi,et al. Integration of satellite remote sensing data in underground coal fire detection: A case study of the Fukang region, Xinjiang, China[J]. Frontiers of Earth Science,2020,14:1−12. doi: 10.1007/s11707-019-0757-9
|
[14] |
朱爱萍. 基于ETM数据煤田火区温度反演研究[J]. 测绘与空间地理信息,2018,41(3):83−86. doi: 10.3969/j.issn.1672-5867.2018.03.025
ZHU Aiping. Based on the temperature inversion in the coal fire area ETM data[J]. Geomatics and Spatial Information Technology,2018,41(3):83−86. doi: 10.3969/j.issn.1672-5867.2018.03.025
|
[15] |
蒋卫国,武建军,顾 磊,等. 基于夜间热红外光谱的地下煤火监测方法研究[J]. 光谱学与光谱分析,2011,31(2):357−361. doi: 10.3964/j.issn.1000-0593(2011)02-0357-05
JIANG Weiguo,WU Jianjun,GU Lei,et al. Monitoring method of underground coal fire based on night thermal infrared remote sensing technology[J]. Spectroscopy and Spectral Analysis,2011,31(2):357−361. doi: 10.3964/j.issn.1000-0593(2011)02-0357-05
|
[16] |
田国良, 柳钦火. 热红外遥感[M]. 2版. 北京: 电子工业出版社, 2014: 208–213.
|
[17] |
周 吕,鲁金金,文学霖,等. 基于小基线集时序干涉雷达分析武汉中心城区地表沉降时空特征[J]. 科学技术与工程,2021,21(1):40−46.
ZHOU LYU,LU Jinjin,WEN Xuelin,et al. Spatial-temporal characteristics analysis of ground subsidence in central urban areas of Wuhan based on small baseline subset interferometric synthetic aperture rader[J]. Science Technology and Engineering,2021,21(1):40−46.
|
[18] |
张文哲. 基于SBAS–InSAR技术的天津市地表沉降监测研究[D]. 长春: 吉林大学, 2020.
ZHANG Wenzhe. Surface subsidence monitoring in Tianjin based on SBAS–INSAR technology[D]. Changchun: Jilin University, 2020.
|
[19] |
邓 军,鹿 璐. 基于融合分布式目标的SBAS方法矿区地表沉降监测[J]. 煤炭科学技术,2020,48(10):205−211. doi: 10.13199/j.cnki.cst.2020.10.027
DENG Jun,LU Lu. Surface subsidence monitoring in mining area based on SBAS method fusing distributed scatterers[J]. Coal Science and Technology,2020,48(10):205−211. doi: 10.13199/j.cnki.cst.2020.10.027
|
[20] |
余 昊,陈炳乾,康建荣,等. 基于SBAS–InSAR的关闭矿井地表形变规律研究[J]. 工矿自动化,2021,47(2):45−51.
YU Hao,CHEN Bingqian,KANG Jianrong,et al. Research on surface deformation law of closed mine based on SBAS–InSAR[J]. Industry and Mine Automation,2021,47(2):45−51.
|
[21] |
周 斌,周文强,董智宇,等. 氧化升温过程中煤岩介质体氡析出特性实验研究[J]. 煤炭学报,2020,45(S2):859−866. doi: 10.13225/j.cnki.jccs.2020.0448
ZHOU Bin,ZHOU Wenqiang,DONG Zhiyu,et al. Experimental study on radon exhalation characteristics of coal and rock during oxidation heating[J]. Journal of China Coal Society,2020,45(S2):859−866. doi: 10.13225/j.cnki.jccs.2020.0448
|
[1] | ZHANG Junyang, WANG Kun, ZHAO Tongbin, FANG Ping, QI Kuan, WEI Bowei, LI Zhengyue. Status and development of UAV remote sensing technology in mining surface subsidence and fracture measuring[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(S2): 435-444. DOI: 10.12438/cst.2023-0438 |
[2] | YU Hao, ZHANG Haolei, ZHANG Ziyan, SHAO Zhenlu, ZHAO Hongfeng, YAN Shiyong. Multi-source remote sensing identification of underground coal fires based on the fusion of surface temperature and deformation.[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(7): 139-147. DOI: 10.12438/cst.2023-1201 |
[3] | GUO Wenbing, HAN Mingzhen, YANG Weiqiang, MA Zhibao. Research and application of maximum surface subsidence model under the condition of repeated mining in weakly cemented strata[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(9): 1-10. DOI: 10.12438/cst.2022-1814 |
[4] | QIAO Siyu, YANG Zefa, LI Zhiwei, ZHU Xiaojun, NIU Jingjing, QIAN Yuyang. Optimal selection of time functions for describing coal mining-induced dynamic subsidence at single surface point using AIC criterion[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(6): 177-186. DOI: 10.13199/j.cnki.cst.2022-0047 |
[5] | LI Qinghai, ZHANG Cunzhi, LI Kaixin, YU Shengwen, CAO Youxun, YANG Tao. Analysis of influence of different parameters of mining under super-thick loose layer on surface subsidence[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(11): 191-199. |
[6] | GUO Xuwei, YANG Xiaoqin, CHAI Shuangwu, GUO Wenpeng, LIANG Yongtu. Study on surface subsidence dynamic prediction model based on variogram[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(9): 159-166. |
[7] | GAO Yongge, NIU Chu, ZHANG Qiang, ZHANG Kai. Study on surface subsidence characteristics of coal mining under thick loose layer[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (6). |
[8] | LIU Yucheng. Study on time series fitting curves for coal mining-induced surface subsidence[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (5). |
[9] | PAN Hongyu, ZHAO Yunhong, ZHANG Weidong, BAI yun, HAN Yawei. Prediction of surface subsidence with improved BP neural network based on Adaboost[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (2). |
[10] | XU Naizhong GAO Chao WU Taiping, . Study on actual measurement of surface subsidence law occurred by shallow mining depth and high intensity fully mechanized coal mining[J]. COAL SCIENCE AND TECHNOLOGY, 2017, (10). |
1. |
魏少雄,张楠,钟本源. 基于深度学习的煤矿烟火检测算法研究. 煤. 2025(06): 23-26 .
![]() | |
2. |
于灏,张豪磊,张子彦,邵振鲁,赵宏峰,闫世勇. 融合地表温度与形变的地下煤火多源遥感识别研究. 煤炭科学技术. 2024(07): 139-147 .
![]() | |
3. |
黄洁,张锦. 基于多源遥感影像的矿区煤火探测方法. 煤炭工程. 2024(07): 174-180 .
![]() | |
4. |
张荣志,何浩,于浩. 基于遥感技术的矿山煤火燃烧风险评价. 煤炭技术. 2024(11): 147-151 .
![]() | |
5. |
孙长斌. 无人机热红外遥感技术对矿区煤火探测识别研究. 中国煤炭. 2023(S2): 85-94 .
![]() | |
6. |
马子钧,李元元,武静,欧阳子琪,王明伟,邱天翔,许志华. 顾及地表覆被差异的卫星遥感煤火识别方法. 煤炭科学技术. 2023(S2): 92-103 .
![]() |